Patents by Inventor Jeffrey Mark Stryker

Jeffrey Mark Stryker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9458395
    Abstract: Phosphoranimide-metal catalysts and their role in hydrodesulfurization and hydrogenation are disclosed. The catalysts comprise of first row transition metals such as nickel, cobalt and iron. The catalysts have a metal to anionic phosphoranimide ratio of 1:1 and have no inactive bulk phase and no dative ancillary ligands. In one embodiment, the catalysts comprise discrete mixed-valent precatalyst clusters, the electronic state of which can be adjusted to optimize catalytic activity. The catalysts catalyze the hydrodesulfurization of a range of sulfur-containing organic compounds under lower temperature and pressure conditions than those conditions commonly used in industrial hydrodesulfurization. The catalysts also catalyze the hydrogenation of substrates comprising at least one carbon-carbon double bond which is not present in an aromatic moiety, although the substrate itself may include an aromatic moiety.
    Type: Grant
    Filed: May 21, 2013
    Date of Patent: October 4, 2016
    Assignee: Governors of the University of Alberta
    Inventors: Houston J. S. Brown, Jeffrey Mark Stryker, Dominque M. Hebert
  • Patent number: 9120741
    Abstract: Phosphoranimide-metal catalysts and their role in hydrogenation and hydrosilylation are disclosed. The catalysts comprise first row transition metals such as nickel, cobalt or iron. The catalysts have a metal to anionic phosphoranimide ratio of 1:1. This disclosure presents a process for catalytic hydrogenation and hydrosilylation of a range of unsaturated organic compounds under lower temperature and pressure conditions than conditions associated with industrial hydrogenation and hydrosilylation.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: September 1, 2015
    Assignee: Governors of the University of Alberta
    Inventors: Jeffrey Camacho Bunquin, Jeffrey Mark Stryker
  • Patent number: 9120984
    Abstract: Phosphoranimide-metal catalysts and their role in hydrodesulfurization are disclosed. The catalysts comprise of first row transition metals such as nickel, cobalt and iron. The catalysts have a metal to anionic phosphoranimide ratio of 1:1 and catalyze hydrodesulfurization of a range of sulfur-containing organic compounds under lower temperature and pressure conditions than those commonly used in industrial hydrodesulfurization.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: September 1, 2015
    Assignee: Governors of the University of Alberta
    Inventors: Jeffrey Camacho Bunquin, Jeffrey Mark Stryker
  • Patent number: 9051229
    Abstract: Phosphoranimide-metal catalysts and their role in C—O bond hydrogenolysis and hydrodeoxygenation (HDO) are disclosed. The catalysts comprise of first row transition metals such as nickel, cobalt and iron. The catalysts have a metal to anionic phosphoranimide ratio of 1:1 and catalyze C—O bond hydrogenolyses of a range of oxygen-containing organic compounds under lower temperature and pressure conditions than those commonly used in industrial hydrodeoxygenation.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: June 9, 2015
    Assignee: Governors of the University of Alberta
    Inventors: Jeffrey Camacho Bunquin, Jeffrey Mark Stryker
  • Patent number: 9000198
    Abstract: Phosphoranimide-metal catalysts are disclosed. The catalysts comprise first row transition metals such as nickel, cobalt or iron. The hydrocarbon-soluble catalysts have a metal to anionic phosphoranimide ratio of 1:1, and have no inactive bulk phase and no dative ancillary ligands. The electronic state of the clusters can be adjusted to optimize catalytic activity for a range of commercially important reductive transformations, including hydrodesulfurization. A method of synthesis of these catalysts by anionic metathesis of a halide substituted precursor followed by oxidation is also disclosed.
    Type: Grant
    Filed: May 21, 2013
    Date of Patent: April 7, 2015
    Assignee: Governors of the University of Alberta
    Inventors: Houston J. S. Brown, Jeffrey Mark Stryker, Dominque M. Hebert
  • Patent number: 8901334
    Abstract: Phosphoranimide-metal catalysts are disclosed. The catalysts comprise first row transition metals such as nickel, cobalt or iron. The hydrocarbon-soluble catalysts have a metal to anionic phosphoranimide ratio of 1:1, have no inactive bulk phase and no dative ancillary ligands, and are active for a range of commercially important reductive transformations. A method of synthesis of these catalysts by reduction of a precursor of these catalysts is also disclosed.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: December 2, 2014
    Assignee: Governors of the University of Alberta
    Inventors: Jeffrey Camacho Bunquin, Jeffrey Mark Stryker
  • Publication number: 20140346087
    Abstract: Phosphoranimide-metal catalysts and their role in hydrodesulfurization and hydrogenation are disclosed. The catalysts comprise of first row transition metals such as nickel, cobalt and iron. The catalysts have a metal to anionic phosphoranimide ratio of 1:1 and have no inactive bulk phase and no dative ancillary ligands. In one embodiment, the catalysts comprise discrete mixed-valent precatalyst clusters, the electronic state of which can be adjusted to optimize catalytic activity. The catalysts catalyze the hydrodesulfurization of a range of sulfur-containing organic compounds under lower temperature and pressure conditions than those conditions commonly used in industrial hydrodesulfurization. The catalysts also catalyze the hydrogenation of substrates comprising at least one carbon-carbon double bond which is not present in an aromatic moiety, although the substrate itself may include an aromatic moiety.
    Type: Application
    Filed: May 21, 2013
    Publication date: November 27, 2014
    Applicant: GOVERNORS OF THE UNIVERSITY OF ALBERTA
    Inventors: Houston J.S. BROWN, Jeffrey Mark Stryker, Dominque M. Hebert
  • Publication number: 20140350275
    Abstract: Phosphoranimide-metal catalysts are disclosed. The catalysts comprise first row transition metals such as nickel, cobalt or iron. The hydrocarbon-soluble catalysts have a metal to anionic phosphoranimide ratio of 1:1, and have no inactive bulk phase and no dative ancillary ligands. The electronic state of the clusters can be adjusted to optimize catalytic activity for a range of commercially important reductive transformations, including hydrodesulfurization. A method of synthesis of these catalysts by anionic metathesis of a halide substituted precursor followed by oxidation is also disclosed.
    Type: Application
    Filed: May 21, 2013
    Publication date: November 27, 2014
    Applicant: GOVERNORS OF THE UNIVERSITY OF ALBERTA
    Inventors: Houston J.S. BROWN, Jeffrey Mark Stryker, Dominque M. Hebert
  • Publication number: 20140179954
    Abstract: Phosphoranimide-metal catalysts and their role in C—O bond hydrogenolysis and hydrodeoxygenation (HDO) are disclosed. The catalysts comprise of first row transition metals such as nickel, cobalt and iron. The catalysts have a metal to anionic phosphoranimide ratio of 1:1 and catalyze C—O bond hydrogenolyses of a range of oxygen-containing organic compounds under lower temperature and pressure conditions than those commonly used in industrial hydrodeoxygenation.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Applicant: GOVERNORS OF THE UNIVERSITY OF ALBERTA
    Inventors: Jeffrey Camacho Bunquin, Jeffrey Mark Stryker
  • Publication number: 20140179946
    Abstract: Phosphoranimide-metal catalysts and their role in hydrogenation and hydrosilylation are disclosed. The catalysts comprise first row transition metals such as nickel, cobalt or iron. The catalysts have a metal to anionic phosphoranimide ratio of 1:1. This disclosure presents a process for catalytic hydrogenation and hydrosilylation of a range of unsaturated organic compounds under lower temperature and pressure conditions than conditions associated with industrial hydrogenation and hydrosilylation.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Applicant: GOVERNORS OF THE UNIVERSITY OF ALBERTA
    Inventors: Jeffrey Camacho BUNQUIN, Jeffrey Mark STRYKER
  • Publication number: 20140174989
    Abstract: Phosphoranimide-metal catalysts and their role in hydrodesulfurization are disclosed. The catalysts comprise of first row transition metals such as nickel, cobalt and iron. The catalysts have a metal to anionic phosphoranimide ratio of 1:1 and catalyze hydrodesulfurization of a range of sulfur-containing organic compounds under lower temperature and pressure conditions than those commonly used in industrial hydrodesulfurization.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Inventors: Jeffrey Camacho Bunquin, Jeffrey Mark STRYKER
  • Patent number: 6670512
    Abstract: The present invention seeks to provide novel tetraarylethylene compounds which are substituted on the aryl rings ortho to the ethylenic carbon atoms and processes for the preparation for such compounds. The compounds have potential use as molecular templates.
    Type: Grant
    Filed: June 21, 2002
    Date of Patent: December 30, 2003
    Inventors: Jeffrey Mark Stryker, Udo Hendrick Verkerk, Megumi Fujita, Makoto Yasuda
  • Publication number: 20020183540
    Abstract: The present invention seeks to provide novel tetraarylethylene compounds which are substituted on the aryl rings ortho to the ethylenic carbon atoms and processes for the preparation for such compounds. The compounds have potential use as molecular templates.
    Type: Application
    Filed: June 21, 2002
    Publication date: December 5, 2002
    Applicant: THE GOVERNORS OF THE UNIVERSITY OF ALBERTA
    Inventors: Jeffrey Mark Stryker, Udo Hendrick Verkerk, Megumi Fujita, Makoto Yasuda