Patents by Inventor Jeffrey R. Potts

Jeffrey R. Potts has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10940673
    Abstract: A method of forming a structure for a downhole application comprises forming an interfacial material comprising at least one of self-reinforced polyphenylene, polyphenylene sulfide, polysulfone, and polyphenylsulfone between opposing surfaces of a first substrate and a second substrate. A downhole structure and a downhole assembly are also described.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: March 9, 2021
    Assignee: Baker Hughes Holdings LLC
    Inventors: Jeffrey R. Potts, Sayantan Roy, Michael H. Johnson, Anil K. Sadana
  • Patent number: 10280359
    Abstract: Methods of using a component in a subterranean wellbore include positioning a component including a degradable thermoset polymer material in a wellbore location, obstructing flow with the component, exposing the component to an acidic solution to degrade the selectively degradable thermoset polymer material and to remove the component from the wellbore location, and flowing a fluid through the wellbore location where the component was positioned. Methods of forming a component of a wellbore system include forming at least a portion of the component to comprise a degradable thermoset polymer material. Wellbore systems include at least one component including a selectively degradable thermoset polymer material. The selectively degradable thermoset polymer material may be a polyhexahydrotriazine (“PHT”) material.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: May 7, 2019
    Assignee: Baker Hughes Incorporated
    Inventors: Anil K. Sadana, Jeffrey R. Potts
  • Publication number: 20180118997
    Abstract: Methods of using a component in a subterranean wellbore include positioning a component including a degradable thermoset polymer material in a wellbore location, obstructing flow with the component, exposing the component to an acidic solution to degrade the selectively degradable thermoset polymer material and to remove the component from the wellbore location, and flowing a fluid through the wellbore location where the component was positioned. Methods of forming a component of a wellbore system include forming at least a portion of the component to comprise a degradable thermoset polymer material. Wellbore systems include at least one component including a selectively degradable thermoset polymer material. The selectively degradable thermoset polymer material may be a polyhexahydrotriazine (“PHT”) material.
    Type: Application
    Filed: December 27, 2017
    Publication date: May 3, 2018
    Inventors: Anil K. Sadana, Jeffrey R. Potts
  • Patent number: 9856411
    Abstract: Methods of using a component in a subterranean wellbore include positioning a component including a degradable thermoset polymer material in a wellbore location, obstructing flow with the component, exposing the component to an acidic solution to degrade the selectively degradable thermoset polymer material and to remove the component from the wellbore location, and flowing a fluid through the wellbore location where the component was positioned. Methods of forming a component of a wellbore system include forming at least a portion of the component to comprise a degradable thermoset polymer material. Wellbore systems include at least one component including a selectively degradable thermoset polymer material. The selectively degradable thermoset polymer material may be a polyhexahydrotriazine (“PHT”) material.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: January 2, 2018
    Assignee: Baker Hughes Incorporated
    Inventors: Anil K. Sadana, Jeffrey R. Potts
  • Publication number: 20170297306
    Abstract: A method of forming a structure for a downhole application comprises forming an interfacial material comprising at least one of self-reinforced polyphenylene, polyphenylene sulfide, polysulfone, and polyphenylsulfone between opposing surfaces of a first substrate and a second substrate. A downhole structure and a downhole assembly are also described.
    Type: Application
    Filed: June 29, 2017
    Publication date: October 19, 2017
    Inventors: Jeffrey R. Potts, Sayantan Roy, Michael H. Johnson, Anil K. Sadana
  • Publication number: 20160115368
    Abstract: Methods of using a component in a subterranean wellbore include positioning a component including a degradable thermoset polymer material in a wellbore location, obstructing flow with the component, exposing the component to an acidic solution to degrade the selectively degradable thermoset polymer material and to remove the component from the wellbore location, and flowing a fluid through the wellbore location where the component was positioned. Methods of forming a component of a wellbore system include forming at least a portion of the component to comprise a degradable thermoset polymer material. Wellbore systems include at least one component including a selectively degradable thermoset polymer material. The selectively degradable thermoset polymer material may be a polyhexahydrotriazine (“PHT”) material.
    Type: Application
    Filed: October 28, 2014
    Publication date: April 28, 2016
    Inventors: Anil K. Sadana, Jeffrey R. Potts
  • Publication number: 20160101600
    Abstract: A method of forming a structure for a downhole application comprises forming an interfacial material comprising at least one of self-reinforced polyphenylene, polyphenylene sulfide, polysulfone, and polyphenylsulfone between opposing surfaces of a first substrate and a second substrate. A downhole structure and a downhole assembly are also described.
    Type: Application
    Filed: October 9, 2014
    Publication date: April 14, 2016
    Inventors: Jeffrey R. Potts, Sayantan Roy, Michael H. Johnson, Anil K. Sadana
  • Patent number: 9303150
    Abstract: A composition contains a polymer component comprising a crosslinked product of a polyarylene, a crosslinked product of a substituted polyphenylene, a crosslinked product of a polyphenylene sulfide and a polyphenylsulfone, or a combination comprising at least one of the foregoing; and a mesoporous silicate having an average pore size of about 5 nanometers to about 50 nanometers. The composition has high-temperature elastomeric properties and excellent mechanical strength. The compositions are useful in oil and gas downhole applications. Methods for the manufacture of the composition and articles comprising the composition are also disclosed.
    Type: Grant
    Filed: April 3, 2014
    Date of Patent: April 5, 2016
    Assignee: BAKER HUGHES INCORPORATED
    Inventors: Sayantan Roy, Bennett M. Richard, Jeffrey R. Potts, Anil K. Sadana
  • Publication number: 20150284542
    Abstract: A composition contains a polymer component comprising a crosslinked product of a polyarylene, a crosslinked product of a substituted polyphenylene, a crosslinked product of a polyphenylene sulfide and a polyphenylsulfone, or a combination comprising at least one of the foregoing; and a mesoporous silicate having an average pore size of about 5 nanometers to about 50 nanometers. The composition has high-temperature elastomeric properties and excellent mechanical strength. The compositions are useful in oil and gas downhole applications. Methods for the manufacture of the composition and articles comprising the composition are also disclosed.
    Type: Application
    Filed: April 3, 2014
    Publication date: October 8, 2015
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Sayantan Roy, Bennett M. Richard, Jeffrey R. Potts, Anil K. Sadana
  • Patent number: 5487593
    Abstract: An anti-lock braking system (1) includes an electronic control unit or ECU having software which utilizes inputs of deceleration and pump motor voltage feedback to effect an appropriate duty cycle for the pump motor. By utilizing vehicle velocity, calculated vehicle deceleration and wheel deceleration to estimate the type of surface engaged by the vehicle wheels, and utilizing motor voltage to estimate pump load, the duty cycle of the motor may be varied so that low brake pedal effort braking has the benefit of less pump motor operation and reduced pump motor noise.
    Type: Grant
    Filed: November 23, 1994
    Date of Patent: January 30, 1996
    Assignee: AlliedSignal Inc.
    Inventors: Jeffrey R. Potts, Charles E. Lindenman, Thomas A. Grana