Patents by Inventor Jeffrey S. Walker

Jeffrey S. Walker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11952218
    Abstract: A grain bin unload conveyor trough can have a wall profile including a lowermost curved wall portion. Lower portions of a pair of side walls can be spaced laterally from each other at a first interior lateral width, and upper portions of the side walls can be spaced laterally from each other at a second interior lateral width that is greater than the first interior lateral width. A shelf portion of each side wall can extend laterally outwardly from the lower to the upper portion of the side walls. An auger hanger can extend laterally across the conveyor trough and can be supported on the shelf portions of the side walls. The auger hanger can extend down to hold an auger shaft of a grain bin unload conveyor auger in the conveyor trough centrally within the first interior lateral width between the lower portions of the side walls.
    Type: Grant
    Filed: September 18, 2020
    Date of Patent: April 9, 2024
    Assignee: CTB, Inc.
    Inventors: Jeffrey E. Walker, Adam K. Gutwein, Mark S. Dingeldein
  • Publication number: 20240074529
    Abstract: A sensor system is adapted for use with an article of footwear and includes an insert member including a first layer and a second layer, a port connected to the insert and configured for communication with an electronic module, a plurality of force and/or pressure sensors on the insert member, and a plurality of leads connecting the sensors to the port.
    Type: Application
    Filed: September 19, 2023
    Publication date: March 7, 2024
    Inventors: Michael S. Amos, Andrew A. Owings, Jordan M. Rice, Allan M. Schrock, Steven H. Walker, Jeffrey J. Hebert, Martine W. Stillman, Mark A. Tempel, Dane Weitmann, Andreas Heinrich Steier, Ndikum Protus Atang
  • Patent number: 8239157
    Abstract: A method and apparatus is disclosed that guides a user through a sequence of steps that will allow the user to complete a predefined task using the flow meter. The steps include: selecting a predefined task, displaying a sequence of steps that directs the user through a process for using the Coriolis flow meter to complete the predefined task, and operating the Coriolis flow meter in response to the sequence of steps to complete the predefined task.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: August 7, 2012
    Assignee: Micro Motion, Inc.
    Inventors: Craig B McAnally, Andrew T Patten, Charles P Stack, Jeffrey S Walker, Neal B Gronlie
  • Publication number: 20110144938
    Abstract: A method and apparatus is disclosed that guides a user through a sequence of steps that will allow the user to complete a predefined task using the flow meter. The steps include: selecting a predefined task, displaying a sequence of steps that directs the user through a process for using the Coriolis flow meter to complete the predefined task, and operating the Coriolis flow meter in response to the sequence of steps to complete the predefined task.
    Type: Application
    Filed: February 24, 2011
    Publication date: June 16, 2011
    Applicant: Micro Motion, Inc.
    Inventors: Craig B. MCANALLY, Andrew T. Patten, Charles P. Stack, Jeffrey S. Walker, Neal B. Gronlie
  • Patent number: 7925456
    Abstract: A method and apparatus is disclosed that guides a user through a sequence of steps that will allow the user to complete a predefined task using the flow meter. The steps include: selecting a predefined task, displaying a sequence of steps that directs the user through a process for using the Coriolis flow meter to complete the predefined task, and operating the Coriolis flow meter in response to the sequence of steps to complete the predefined task.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: April 12, 2011
    Assignee: Micro Motion, Inc.
    Inventors: Craig B. McAnally, Andrew T. Patten, Charles P. Stack, Jeffrey S. Walker, Neal B. Gronlie
  • Publication number: 20080189054
    Abstract: A method and apparatus is disclosed that guides a user through a sequence of steps that will allow the user to complete a predefined task using the flow meter. The steps include: selecting a predefined task, displaying a sequence of steps that directs the user through a process for using the Coriolis flow meter to complete the predefined task, and operating the Coriolis flow meter in response to the sequence of steps to complete the predefined task.
    Type: Application
    Filed: December 30, 2004
    Publication date: August 7, 2008
    Applicant: Micro Motion Inc.
    Inventors: Craig B. McAnally, Andrew T. Patten, Charles P. Stack, Jeffrey S. Walker, Neal B. Gronlie
  • Patent number: 6111888
    Abstract: An apparatus and method for deterministically communicating data between multiple nodes in a fashion that is consistent with the Controller Area Network ("CAN") communications protocol. The system applies to multiple nodes that functional blocks within an operating system environment and to multiple nodes that are each connected to a serial bus. The system utilizes standard CAN error checking, bus arbitration and message formatting and therefore uses standard CAN controllers and transceivers. One node on the bus is selected as the master node. The master node issues a periodic synchronization signal which defines time divisions within which the operations of each node and communications over the CAN bus are organized. Data, particularly real-time data, is transmitted between nodes on the CAN bus during a known time division. Standard CAN bus arbitration is used to ensure that real-time data is transmitted over the CAN bus prior to the transmission of non-real-time data.
    Type: Grant
    Filed: May 27, 1997
    Date of Patent: August 29, 2000
    Assignee: Micro Motion, Inc.
    Inventors: Thomas C. Green, Paul J. Hays, Allan L. Samson, Jeffrey S. Walker, Michael J. Zolock