Patents by Inventor Jeffrey Schubert

Jeffrey Schubert has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210223190
    Abstract: Methods for characterizing living plants, wherein one or more beams of penetrating radiation such as x-rays are scanned across the plant under field conditions. Compton scatter is detected from the living plant and processed to derive characteristics of the living plant such as water content, root structure, branch structure, xylem size, fruit size, fruit shape, fruit aggregate volume, cluster size and shape, fruit maturity and an image of a part of the plant. Ground water content is measured using the same technique. Compton backscatter is used to guide a robotic gripper to grasp a portion of the plant such as for harvesting a fruit.
    Type: Application
    Filed: February 22, 2021
    Publication date: July 22, 2021
    Inventors: Aaron Couture, Calvin Adams, Rafael Fonseca, Jeffrey Schubert, Richard Mastronardi
  • Patent number: 10955367
    Abstract: Methods for characterizing living plants, wherein one or more beams of penetrating radiation such as x-rays are scanned across the plant under field conditions. Compton scatter is detected from the living plant and processed to derive characteristics of the living plant such as water content, root structure, branch structure, xylem size, fruit size, fruit shape, fruit aggregate volume, cluster size and shape, fruit maturity and an image of a part of the plant. Ground water content is measured using the same technique. Compton backscatter is used to guide a robotic gripper to grasp a portion of the plant such as for harvesting a fruit.
    Type: Grant
    Filed: September 7, 2016
    Date of Patent: March 23, 2021
    Assignee: American Science and Engineering, Inc.
    Inventors: Aaron Couture, Calvin Adams, Rafael Fonseca, Jeffrey Schubert, Richard Mastronardi
  • Patent number: 10712293
    Abstract: Methods for characterizing living plants, wherein one or more beams of penetrating radiation such as x-rays are scanned across the plant under field conditions. Compton scatter is detected from the living plant and processed to derive characteristics of the living plant such as water content, root structure, branch structure, xylem size, fruit size, fruit shape, fruit aggregate volume, cluster size and shape, fruit maturity and an image of a part of the plant. Ground water content is measured using the same technique. Compton backscatter is used to guide a robotic gripper to grasp a portion of the plant such as for harvesting a fruit.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: July 14, 2020
    Assignee: American Science and Engineering, Inc.
    Inventors: Aaron Couture, Calvin Adams, Rafael Fonseca, Jeffrey Schubert, Richard Mastronardi
  • Publication number: 20200049635
    Abstract: Methods for characterizing living plants, wherein one or more beams of penetrating radiation such as x-rays are scanned across the plant under field conditions. Compton scatter is detected from the living plant and processed to derive characteristics of the living plant such as water content, root structure, branch structure, xylem size, fruit size, fruit shape, fruit aggregate volume, cluster size and shape, fruit maturity and an image of a part of the plant. Ground water content is measured using the same technique. Compton backscatter is used to guide a robotic gripper to grasp a portion of the plant such as for harvesting a fruit.
    Type: Application
    Filed: October 18, 2019
    Publication date: February 13, 2020
    Inventors: Aaron Couture, Calvin Adams, Rafael Fonseca, Jeffrey Schubert, Richard Mastronardi
  • Publication number: 20200033274
    Abstract: Methods for characterizing living plants, wherein one or more beams of penetrating radiation such as x-rays are scanned across the plant under field conditions. Compton scatter is detected from the living plant and processed to derive characteristics of the living plant such as water content, root structure, branch structure, xylem size, fruit size, fruit shape, fruit aggregate volume, cluster size and shape, fruit maturity and an image of a part of the plant. Ground water content is measured using the same technique. Compton backscatter is used to guide a robotic gripper to grasp a portion of the plant such as for harvesting a fruit.
    Type: Application
    Filed: September 7, 2016
    Publication date: January 30, 2020
    Inventors: Aaron Couture, Calvin Adams, Rafael Fonseca, Jeffrey Schubert, Richard Mastronardi
  • Publication number: 20190383953
    Abstract: Methods for discriminating among x-ray beams of distinct energy content. A first volume of scintillation medium converts energy of incident penetrating radiation into scintillation light which is extracted from a scintillation light extraction region by a plurality of optical waveguides that convert the scintillation light to light of a longer wavelength. An x-ray beam initially incident upon the first volume of scintillation medium and traversing the first volume is then incident on a second volume of scintillation medium. The first and second scintillation media may be separated by an absorber or one or more further volumes of scintillation medium, and may also have differential spectral sensitivities. Scintillation light from the first and second scintillation volumes is detected in respective detectors and processed to yield a measure of respective low energy and high-energy components of the incident x-ray beam.
    Type: Application
    Filed: January 8, 2019
    Publication date: December 19, 2019
    Inventors: Anatoli Arodzero, Joseph Callerame, Dan-Cristian Dinca, Rajen Sud, Lee Grodzins, Martin Rommel, Peter Rothschild, Jeffrey Schubert, Aaron Couture, Jeffrey M. Denker, Jonathan Edward Everett
  • Patent number: 10209372
    Abstract: Methods for discriminating among x-ray beams of distinct energy content. A first volume of scintillation medium converts energy of incident penetrating radiation into scintillation light which is extracted from a scintillation light extraction region by a plurality of optical waveguides that convert the scintillation light to light of a longer wavelength. An x-ray beam initially incident upon the first volume of scintillation medium and traversing the first volume is then incident on a second volume of scintillation medium. The first and second scintillation media may be separated by an absorber or one or more further volumes of scintillation medium, and may also have differential spectral sensitivities. Scintillation light from the first and second scintillation volumes is detected in respective detectors and processed to yield a measure of respective low energy and high-energy components of the incident x-ray beam.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: February 19, 2019
    Assignee: American Science and Engineering, Inc.
    Inventors: Anatoli Arodzero, Joseph Callerame, Dan-Cristian Dinca, Rajen Sud, Lee Grodzins, Martin Rommel, Peter Rothschild, Jeffrey Schubert, Aaron Couture, Jeffrey M. Denker, Jonathan Edward Everett
  • Publication number: 20170315242
    Abstract: Methods for discriminating among x-ray beams of distinct energy content. A first volume of scintillation medium converts energy of incident penetrating radiation into scintillation light which is extracted from a scintillation light extraction region by a plurality of optical waveguides that convert the scintillation light to light of a longer wavelength. An x-ray beam initially incident upon the first volume of scintillation medium and traversing the first volume is then incident on a second volume of scintillation medium. The first and second scintillation media may be separated by an absorber or one or more further volumes of scintillation medium, and may also have differential spectral sensitivities. Scintillation light from the first and second scintillation volumes is detected in respective detectors and processed to yield a measure of respective low energy and high-energy components of the incident x-ray beam.
    Type: Application
    Filed: April 18, 2017
    Publication date: November 2, 2017
    Inventors: Anatoli Arodzero, Joseph Callerame, Dan-Christian Dinca, Rajen Sud, Lee Grodzins, Martin Rommel, Peter Rothschild, Jeffrey Schubert
  • Patent number: 9658343
    Abstract: Methods for discriminating among x-ray beams of distinct energy content. A first volume of scintillation medium converts energy of incident penetrating radiation into scintillation light which is extracted from a scintillation light extraction region by a plurality of optical waveguides that convert the scintillation light to light of a longer wavelength. An x-ray beam initially incident upon the first volume of scintillation medium and traversing the first volume is then incident on a second volume of scintillation medium. The first and second scintillation media may be separated by an absorber or one or more further volumes of scintillation medium, and may also have differential spectral sensitivities. Scintillation light from the first and second scintillation volumes is detected in respective detectors and processed to yield a measure of respective low energy and high-energy components of the incident x-ray beam.
    Type: Grant
    Filed: February 23, 2016
    Date of Patent: May 23, 2017
    Assignee: American Science and Engineering, Inc.
    Inventors: Anatoli Arodzero, Joseph Callerame, Dan-Christian Dinca, Rajen Sud, Lee Grodzins, Martin Rommel, Peter Rothschild, Jeffrey Schubert
  • Publication number: 20160170044
    Abstract: Methods for discriminating among x-ray beams of distinct energy content. A first volume of scintillation medium converts energy of incident penetrating radiation into scintillation light which is extracted from a scintillation light extraction region by a plurality of optical waveguides that convert the scintillation light to light of a longer wavelength. An x-ray beam initially incident upon the first volume of scintillation medium and traversing the first volume is then incident on a second volume of scintillation medium. The first and second scintillation media may be separated by an absorber or one or more further volumes of scintillation medium, and may also have differential spectral sensitivities. Scintillation light from the first and second scintillation volumes is detected in respective detectors and processed to yield a measure of respective low energy and high-energy components of the incident x-ray beam.
    Type: Application
    Filed: February 23, 2016
    Publication date: June 16, 2016
    Inventors: Anatoli Arodzero, Joseph Callerame, Dan-Christian Dinca, Rajen Sud, Lee Grodzins, Martin Rommel, Peter Rothschild, Jeffrey Schubert
  • Patent number: 9285488
    Abstract: A detector and methods for inspecting material on the basis of scintillator coupled by wavelength-shifting optical fiber to one or more photo-detectors, with a temporal integration of the photo-detector signal. An unpixelated volume of scintillation medium converts energy of incident penetrating radiation into scintillation light which is extracted from a scintillation light extraction region by a plurality of optical waveguides. This geometry provides for efficient and compact detectors, enabling hitherto unattainable geometries for backscatter detection and for energy discrimination of incident radiation. Additional energy-resolving transmission configurations are enabled as are skew- and misalignment compensation.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: March 15, 2016
    Assignee: American Science and Engineering, Inc.
    Inventors: Anatoli Arodzero, Joseph Callerame, Dan-Cristian Dinca, Rajen Sud, Lee Grodzins, Martin Rommel, Peter Rothschild, Jeffrey Schubert
  • Patent number: 9146201
    Abstract: An x-ray inspection system using backscatter of an x-ray beam emitted through a scan panel contiguous with, but of a material distinct from, an enclosure that contains an x-ray source by which the x-ray beam is generated. The scan panel is contoured in such a manner as to be visibly blended with a shape characterizing the enclosure. In some embodiments, the beam traverses multiple scan panels, where one or more of the scan panels may be selected for beam filtration properties. The scan panel may be disposed interior to a sliding door, and may be structured to serve as a scatter shield.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: September 29, 2015
    Assignee: American Science and Engineering, Inc.
    Inventors: Jeffrey Schubert, Jeffrey M. Denker, Jason Toppan, Michael Chesna, Richard Mastronardi, Robyn Smith, Richard Schueller, Jeffrey Illig
  • Patent number: 8194822
    Abstract: Systems and methods for inspecting an object with a scanned beam of penetrating radiation. Scattered radiation from the beam is detected, in either a backward or forward direction. Characteristic values of the scattered radiation are compared to expected reference values to characterize the object. Additionally, penetrating radiation transmitted through the inspected object may be combined with scatter information. In certain embodiments, the inspected field of view is less than 0.1 steradians, and the detector is separate from the source of penetrating radiation and is disposed, with respect to the object, such as to subtend greater than 0.5 steradians in the field of view of the object.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: June 5, 2012
    Assignee: American Science and Engineering, Inc.
    Inventors: Peter Rothschild, Jeffrey Schubert, Richard Schueller
  • Publication number: 20090257555
    Abstract: An inspection system, and inspection methods, based upon an imaging enclosure characterized by an enclosing body. A source of penetrating radiation and a detector module are concealed entirely within the body of a conveyance such as a trailer. A characterizing value or an image is formed with respect to an inspected object that is disposed entirely outside the conveyance and the characterizing value or image is made available to a remotely disposed operator. Additional detectors may be disposed distally to the inspected object and may detect transmitted, or forward-scattered, penetrating radiation.
    Type: Application
    Filed: February 10, 2009
    Publication date: October 15, 2009
    Applicant: American Science and Engineering, Inc.
    Inventors: Alex Chalmers, Louis W. Perich, Peter J. Rothschild, William John Baukus, Jeffrey Schubert
  • Patent number: 7551715
    Abstract: Systems and methods for inspecting an object with a scanned beam of penetrating radiation are disclosed. Scattered radiation from the beam is detected, in either the backward or forward direction. Characteristic values of the backscattered radiation are compared to expected reference values to characterize the object. Additionally, penetrating radiation transmitted through the inspected object may be combined with scatter information. In certain embodiments, the inspected field of view is less than 0.1 steradians, and the detector is separate from the source of penetrating radiation and is disposed, with respect to the object, such as to subtend greater than 0.5 steradians in the field of view of the object.
    Type: Grant
    Filed: October 23, 2006
    Date of Patent: June 23, 2009
    Assignee: American Science and Engineering, Inc.
    Inventors: Peter Rothschild, Jeffrey Schubert, William J. Baukus, William Wade Sapp, Jr., Richard Schueller, Joseph Callerame, William Randall Cason
  • Publication number: 20070098142
    Abstract: Systems and methods for inspecting an object with a scanned beam of penetrating radiation are disclosed. Scattered radiation from the beam is detected, in either the backward or forward direction. Characteristic values of the backscattered radiation are compared to expected reference values to characterize the object. Additionally, penetrating radiation transmitted through the inspected object may be combined with scatter information. In certain embodiments, the inspected field of view is less than 0.1 steradians, and the detector is separate from the source of penetrating radiation and is disposed, with respect to the object, such as to subtend greater than 0.5 steradians in the field of view of the object.
    Type: Application
    Filed: October 23, 2006
    Publication date: May 3, 2007
    Inventors: Peter Rothschild, Jeffrey Schubert, William Baukus, William Sapp, Richard Schueller, Joseph Callerame, William Cason
  • Publication number: 20060245548
    Abstract: Apparatus and methods that permit an operator of a backscatter x-ray system to shine a search light on a closed container or vehicle, and then image the contents of that container in a region roughly corresponding to the area of the container covered by the search light. A display near the operator presents the backscatter image of the container contents.
    Type: Application
    Filed: April 21, 2006
    Publication date: November 2, 2006
    Inventors: Joseph Callerame, William Sapp, Jeffrey Schubert, Richard Schueller