Patents by Inventor Jeffrey T. Borenstein

Jeffrey T. Borenstein has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10478543
    Abstract: A microfluidic device for increasing convective clearance of particles from a fluid is provided. A network of first channels can be separated from a network of second channels by a first membrane. The network of first channels can also be separated from a network of third channels by a second membrane. Fluid containing an analyte can be introduced in the network of first channels. Infusate can be introduced into the network of second channels, and waste-collecting fluid can be introduced into the network of third channels. A pressure gradient can be applied in a direction perpendicular to the direction of fluid flow in the network of first channels, such that the analyte is transported from the network of first channels into the network of third channels through the second membrane.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: November 19, 2019
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Christopher DiBiasio, Daniel I. Harjes, Joseph L. Charest, Jeffrey T. Borenstein
  • Patent number: 10354962
    Abstract: A destroy on-demand electrical device includes a substrate layer formed using a soluble material (e.g., a Germanium oxide), a semi-conductor layer formed from a material that can become soluble upon further processing (e.g., Germanium) and conductive elements, formed from a metallic material such as Copper. The device is coupled with one or more disintegration sources that contain disintegration agents (e.g., Hydrogen Peroxide) that can promote disintegration of the device. The device can be destroyed in response to actuation of the disintegration sources, for example by actuation of a source that produces Hydrogen Peroxide for use in oxidizing the semi-conductor layer. Water can be used to dissolve dissolvable substrate layers. The semi-conductor layer can be destroyed by first processing this layer to form a dissolvable material and dissolving the processed layer with water. The remaining Copper components disintegrate once their underlying layer have been dissolved and/or by use of a salt.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: July 16, 2019
    Assignee: The Charles Stark Draper Laboratory Inc.
    Inventors: Jeffrey T. Borenstein, Gregory M. Fritz, Jonathan R. Coppeta, Brett C. Isenberg
  • Patent number: 10342909
    Abstract: A microfluidic device for increasing convective clearance of particles from a fluid is provided. In some implementations, described herein the microfluidic device includes multiple layers that each define infusate, blood, and filtrate channels. Each of the channels have a pressure profile. The device can also include one or more pressure control features. The pressure control feature controls a difference between the pressure profiles along a length of the device. For example, the pressure control feature can control the difference between the pressure profile of the filtrate channel and the pressure profile of the blood channel. In some implementations, the pressure control feature controls the pressure difference between two channels such that the difference varies along the length of the channels by less than 50% of the pressure difference between the channels at the channels' inlets.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: July 9, 2019
    Assignee: THE CHARLES STARK DRAPER LABORATORY INC.
    Inventors: Joseph L. Charest, Martin Nohilly, Christopher Dibiasio, Jeffrey T. Borenstein, Mark Laurenzi, Jonathan Wilson
  • Patent number: 10327885
    Abstract: The invention provides method of fabricating a scaffold comprising a fluidic network, including the steps of: (a) generating an initial vascular layer for enclosing the chamber and providing fluid to the cells, the initial vascular layer having a network of channels for fluid; (b) translating the initial vascular layer into a model for fluid dynamics analysis; (c) analyzing the initial vascular layer based on desired parameters selected from the group consisting of a characteristic of a specific fluid, an input pressure, an output pressure, an overall flow rate and combinations thereof to determine sheer stress and velocity within the network of channels; (d) measuring the sheer stress and the velocity and comparing the obtained values to predetermined values; (e) determining if either of the shear stress or the velocity are greater than or less than the predetermined values, and (f) optionally modifying the initial vascular layer and repeating steps (b)-(e).
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: June 25, 2019
    Assignees: The General Hospital Corporation, The Charles Stark Draper Laboratory
    Inventors: David M. Hoganson, Howard I. Pryor, Ira Spool, Joseph P. Vacanti, Jeffrey T. Borenstein
  • Publication number: 20190184342
    Abstract: The present disclosure discusses a system and method that includes a microfluidic device that can be used in either an extracorporeal or implantable configuration. The device supports efficient and safe removal of carbon dioxide from the blood of patients suffering from respiratory disease or injury. The microfluidic device can be a multilayer device that includes gas channels and fluid channels. Distensible membranes within the device can affect a cross-sectional area of the blood channels.
    Type: Application
    Filed: May 26, 2017
    Publication date: June 20, 2019
    Inventors: Jeffrey T. Borenstein, Alla A. Gimbel, Jose A. Santos, James G. Truslow
  • Patent number: 10265698
    Abstract: Microfluidic structures featuring substantially circular channels may be fabricated by embossing polymer sheets.
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: April 23, 2019
    Assignees: The Charles Stark Draper Laboratory, Inc., The Brigham and Women's Hospital, Inc., The Massachusetts Institute of Technology
    Inventors: Jeffrey T. Borenstein, Eli J. Weinberg, James C. Hsiao, Ahmad S. Khalil, Malinda M. Tupper, Guillermo Garcia-Cardena, Peter Mack, Sarah L. Tao
  • Patent number: 10231820
    Abstract: Methods and materials for making complex, living, vascularized tissues for organ and tissue replacement, especially complex and/or thick, structures, such as liver tissue is provided. Tissue lamina is made in a system comprising an apparatus having (a) a first mold or polymer scaffold, a semi-permeable membrane, and a second mold or polymer scaffold, wherein the semi-permeable membrane is disposed between the first and second molds or polymer scaffolds, wherein the first and second molds or polymer scaffolds have means defining microchannels positioned toward the semi-permeable membrane, wherein the first and second molds or polymer scaffolds are fastened together; and (b) animal cells. Methods for producing complex, three-dimensional tissues or organs from tissue lamina are also provided.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: March 19, 2019
    Assignees: The Charles Stark Draper Laboratory, Inc., The General Hospital Corporation
    Inventors: Joseph P. Vacanti, Young-Moon M. Shin, Jennifer Ogilvie, Alexander Sevy, Tomoyuki Maemura, Osamu Ishii, Mohammad R. Kaazempur-Mofrad, Jeffrey T. Borenstein, Kevin R. King, Chiao-Chun Wang, Eli Weinberg
  • Patent number: 10232336
    Abstract: The systems and methods described herein relate to a high-throughput flow apparatus. The apparatus is used with an array of wells, and is configured to impart a predetermined shear stress on cells cultured within each of the wells of the array of wells. The apparatus includes a plurality of mechanical tips. The plurality of mechanical tips each includes a head with a hemispheroid shape. The apparatus also includes a motor associated with at least one of plurality of mechanical tips. The motor is configured to drive the plurality of mechanical tips to impart the shear stress pattern in each of the wells.
    Type: Grant
    Filed: November 6, 2014
    Date of Patent: March 19, 2019
    Assignees: The Charles Stark Draper Laboratory, Inc., The Brigham and Women's Hospital, Inc.
    Inventors: Guillermo Garcia-Cardena, Peter Mack, Jeffrey T. Borenstein, Ahmad S. Khalil, Eli J. Weinberg, Jason O. Fiering, Ernest S. Kim, William J. Adams, Jr., Mitchell Hansberry, Stephen Bellio
  • Publication number: 20190071628
    Abstract: Microfluidic devices and associated methods are disclosed. A microfluidic device includes a target entrainment channel and an effluent channel on opposing sides of a semipermeable membrane. A restrictor channel that is narrower than the effluent channel is interposed between the semipermeable membrane and the effluent channel. Fluid that flows from the target entrainment channel, through the semipermeable membrane and the restrictor channel to the effluent channel, pins target cells along the center of the target entrainment channel for electroporation using an electrode in the channel.
    Type: Application
    Filed: September 6, 2018
    Publication date: March 7, 2019
    Inventors: Jeffrey T. Borenstein, Jenna L. Balestrini, Vishal Tandon, Louis B. Kratchman
  • Patent number: 10214750
    Abstract: Systems and methods are disclosed herein for use in transducing, activating, and otherwise treating cells. Cells are introduced into an inner layer of a multi-layered stack that defines at least one flow chamber and a plurality of cell entrainment regions. Vertical flow through the stack entrains the cells in the cell entrainment regions along with genetic information introduction agents or other additives, before the cells are washed using a reverse vertical flow and are collected from the device.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: February 26, 2019
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Jeffrey T. Borenstein, Joseph L. Charest, Christopher M. DiBiasio, Dorit Berlin, Jenna Balestrini, Jose A. Santos, Vishal Tandon
  • Patent number: 10207227
    Abstract: An compact hydraulic manifold for transporting shear sensitive fluids is provided. A channel network can include a trunk and branch architecture coupled to a bifurcation architecture. Features such as tapered channel walls, curvatures and angles of channels, and zones of low fluid pressure can be used to reduce the size while maintaining wall shear rates within a narrow range. A hydraulic manifold can be coupled to a series of microfluidic layers to construct a compact microfluidic device.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: February 19, 2019
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Christopher DiBiasio, Joseph L. Charest, Jeffrey T. Borenstein, Ernest S. Kim, Daniel I. Harjes, Kevin Hufford
  • Publication number: 20190010516
    Abstract: A method and system of delivering a charged cargo, such as a biomolecule, to a target structure, such as cells, exosomes, other vesicles or micelles, using an electroactive porous membrane. This method comprises contacting an electroactive porous membrane with a fluid flow toward the membrane. The fluid contains charged biomolecules and the membrane and biomolecules are oppositely charged so that the biomolecules in the fluid are trapped on the membrane as the fluid flows through the pores of the membrane. Acceptor cells of interest are pinned to the membrane by the flow of the fluid, thereby aggregating the cells onto the membrane in close proximity to the trapped biomolecules. Finally, the acceptor cells are permeabilized.
    Type: Application
    Filed: July 3, 2018
    Publication date: January 10, 2019
    Inventors: Vishal Tandon, Daniel K. Freeman, Jonathan R. Coppeta, Jeffrey T. Borenstein, Jenna L. Balestrini
  • Publication number: 20180362908
    Abstract: Systems and methods are disclosed herein for use in transducing, activating, and otherwise treating cells. Cells are introduced into an inner layer of a multi-layered stack that defines at least one flow chamber and a plurality of cell entrainment regions. Vertical flow through the stack entrains the cells in the cell entrainment regions along with genetic information introduction agents or other additives, before the cells are washed using a reverse vertical flow and are collected from the device.
    Type: Application
    Filed: August 22, 2018
    Publication date: December 20, 2018
    Inventors: Jeffrey T. Borenstein, Joseph L. Charest, Christopher M. DiBiasio, Dorit Berlin, Jenna Balestrini, Jose A. Santos, Vishal Tandon, Jason O. Fiering
  • Publication number: 20180280971
    Abstract: Systems and methods for conducting assays on tissue fragment samples including providing a suspension maintaining pump, and a plurality of fluid reservoirs, wherein the fluid reservoirs are configured to hold a volume of fluid. The fluid reservoirs are fluidically coupled to a microfluidic assay chip, wherein the microfluidic assay chip includes a plurality of parallel assay channels, a first inlet port for introduction of a tissue fragment sample into the microfluidic assay ship, and a second inlet port coupled to the fluid reservoir. Each channel of the microfluidic assay chip also includes a retention barrier configured to trap the tissue fragment sample such that the fluid perfuses through the tissue sample, as well as an outlet port fluidically coupled to a waste receptacle.
    Type: Application
    Filed: March 30, 2018
    Publication date: October 4, 2018
    Inventors: Jeffrey T. Borenstein, Alla A. Gimbel, Jose A. Santos, Daniel T. Doty, Nathan F. Moore, Louis B. Kratchman, James Truslow
  • Publication number: 20180256312
    Abstract: The invention provides method of fabricating a scaffold comprising a fluidic network, including the steps of: (a) generating an initial vascular layer for enclosing the chamber and providing fluid to the cells, the initial vascular layer having a network of channels for fluid; (b) translating the initial vascular layer into a model for fluid dynamics analysis; (c) analyzing the initial vascular layer based on desired parameters selected from the group consisting of a characteristic of a specific fluid, an input pressure, an output pressure, an overall flow rate and combinations thereof to determine sheer stress and velocity within the network of channels; (d) measuring the sheer stress and the velocity and comparing the obtained values to predetermined values; (e) determining if either of the shear stress or the velocity are greater than or less than the predetermined values, and (f) optionally modifying the initial vascular layer and repeating steps (b)-(e).
    Type: Application
    Filed: November 1, 2017
    Publication date: September 13, 2018
    Inventors: David M. Hoganson, Howard I. Pryor, Ira Spool, Joseph P. Vacanti, Jeffrey T. Borenstein
  • Patent number: 10071193
    Abstract: A compact hydraulic manifold for transporting shear sensitive fluids is provided. A channel network can include a trunk and branch architecture coupled to a bifurcation architecture. Features such as tapered channel walls, curvatures and angles of channels, and zones of low fluid pressure can be used to reduce the size while maintaining wall shear rates within a narrow range. A hydraulic manifold can be coupled to a series of microfluidic layers to construct a compact microfluidic device.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: September 11, 2018
    Assignee: THE CHARLES STARK DRAPER LABORATORY, INC.
    Inventors: Christopher DiBiasio, Joseph L. Charest, Jeffrey T. Borenstein, Ernest Kim, Daniel I. Harjes
  • Patent number: 10039875
    Abstract: A microfluidic device for increasing convective clearance of particles from a fluid is provided. A network of first channels can be separated from a network of second channels by a first membrane. The network of first channels can also be separated from a network of third channels by a second membrane. Fluid containing an analyte can be introduced in the network of first channels. Infusate can be introduced into the network of second channels, and waste-collecting fluid can be introduced into the network of third channels. A pressure gradient can be applied in a direction perpendicular to the direction of fluid flow in the network of first channels, such that the analyte is transported from the network of first channels into the network of third channels through the second membrane.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: August 7, 2018
    Assignee: THE CHARLES STARK DRAPER LABORATORY, INC.
    Inventors: Christopher DiBiasio, Daniel I. Harjes, Joseph L. Charest, Jeffrey T. Borenstein
  • Publication number: 20180179485
    Abstract: A system and method of using a microfluidic electroporation device for cell treatment is provided. The cell or exosome treatment system can include a microfluidic electroporation device, a voltage source coupled to a plurality of electrodes and a controller coupled to the voltage source. The microfluidic electroporation device can include a fluid receptacle, a semipermeable membrane, and a base including a channel in fluid communication with the fluid receptacle and the semipermeable membrane. A first electrode can be positioned within the fluid receptacle and a second electrode coupled to the base. The second electrode is positioned relative to the first electrode to create an electric field sufficient to electroporate cells or exosomes disposed in the fluid receptacle. The controller can be configured to cause the first and second electrodes to apply voltage electroporating the cells and exosomes.
    Type: Application
    Filed: December 21, 2017
    Publication date: June 28, 2018
    Inventors: Jeffrey T. Borenstein, Jenna L. Balestrini, Vishal Tandon, Jonathan R. Coppeta
  • Publication number: 20180142196
    Abstract: The methods and systems described herein provide a cell culture platform with an array of tissue modeling environments and dynamic control of fluid flow. The cell culture platform includes an array of wells that are fluidically coupled by microchannel structures. The dynamically controlled flow of fluid interacts with cells grown within the microchannels.
    Type: Application
    Filed: November 21, 2017
    Publication date: May 24, 2018
    Inventors: Jonathan R. Coppeta, Joseph L. Charest, Else M. Vedula, Jeffrey T. Borenstein, Abigail June Spencer, Brett C. Isenberg
  • Publication number: 20180104689
    Abstract: The invention provides microfluidic devices, methods for imaging cells, and methods for preparing such microfluidic devices. The microfluidic devices are contemplated to provide advantages for use in imaging of cells and subcellular compartments in an environment that mimics in vivo conditions. The microfluidic devices can used with a microscope equipped with an oil emersion objective lens.
    Type: Application
    Filed: December 18, 2017
    Publication date: April 19, 2018
    Inventors: Jeffrey T. Borenstein, Joseph L. Charest, Joseph Cuiffi, Alla Epshteyn, Angela B. Holton, James Ching-Ming Hsiao