Patents by Inventor Jeffrey T. Elks

Jeffrey T. Elks has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8703635
    Abstract: This disclosure relates to a catalyst composition comprising (a) MCM-22 family material; and (b) a binder comprising at least 1 wt. % of a titanium compound based on the weight of said catalyst composition, wherein said titanium compound was anatase and rutile phases.
    Type: Grant
    Filed: June 4, 2013
    Date of Patent: April 22, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Christine N. Elia, Frederick Y. Lo, Jeffrey T. Elks, Darryl D. Lacy, Mohan Kalyanaraman
  • Publication number: 20130267406
    Abstract: This disclosure relates to a catalyst composition comprising (a) MCM-22 family material; and (b) a binder comprising at least 1 wt.% of a titanium compound based on the weight of said catalyst composition, wherein said titanium compound was anatase and rutile phases.
    Type: Application
    Filed: June 4, 2013
    Publication date: October 10, 2013
    Inventors: Christine N. Elia, Frederick Y. Lo, Jeffrey T. Elks, Darryl D. Lacy, Mohan Kalyanaraman
  • Patent number: 8492602
    Abstract: This disclosure relates to a process for alkylating an aromatic hydrocarbon with an alkylating agent to produce an alkylated aromatic product, said process comprising contacting said aromatic hydrocarbon and said alkylating agent with a catalyst composition under alkylation conditions effective to alkylate said aromatic hydrocarbon with said alkylating agent to form an effluent comprising said alkylated aromatic product, wherein said catalyst composition comprising (a) MCM-22 family material; and (b) a binder comprising at least 1 wt. % of a titanium compound based on the weight of said catalyst composition, wherein said titanium compound was anatase and rutile phases.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: July 23, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Christine N. Elia, Frederick Y. Lo, Jeffrey T. Elks, Darryl D. Lacy, Mohan Kalyanaraman
  • Patent number: 8309780
    Abstract: Provided is a process for oligomerizing n-olefins. The process has the step of reacting (oligomerizing) an amount of one or more n-olefins in the presence of a catalytically effective amount of a two or more metal oxides at a temperature effective to effect oligomerization. The two or more metal oxides are represented by the formula MOn/M?On?. M and M?, are, independently, selected from the group consisting of Al, Ce, Fe, P, W, Zr, and combinations thereof. M and M? are different metals or combinations of metals. “n” and “n?” are positive numbers and vary stoichiometrically depending on the valency of M and M?, respectively. Provided is also a process for alkylation of an alkylatable aromatic compound. The process has the step of contacting an amount of one or more n-olefins with an amount of aromatic compound in the presence of a catalytically effective amount of the two or more metal oxides at a temperature effective to effect alkylation of the aromatic compound.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: November 13, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Jihad Mohammed Dakka, Jeffrey T. Elks, James C. Vartuli
  • Publication number: 20110152062
    Abstract: Catalysts for experimentation are produced having a controlled matrix pore structure. The manufacturing process utilizes tape casting in the drying procedure in which a catalyst slurry is cast on a substrate and dried at a temperature of between about 50° C. to 200° C. for a period of time of about 0.1 to 1.0 hour. The dried catalyst particles can be removed from the substrate by several techniques, including scraping, burning, and deforming the substrate material, The resulting catalytic particles can be produced in an amount of about ca. 3 g to 300 g from slurries with volumes between 5 cc to 500 cc, which are suitable for small scale FCC reactors and for high throughput experimentation.
    Type: Application
    Filed: December 1, 2010
    Publication date: June 23, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: William A. Wachter, Brenda A. Raich, Theodore E. Datz, David O. Marler, Nicholas Rollman, Jeffrey T. Elks, Gordon F. Stuntz
  • Publication number: 20110034749
    Abstract: A process is described for synthesizing a porous, crystalline material having the framework structure of ZSM-12 of the formula: (n)YO2:X2O3 wherein X is a trivalent element, Y is a tetravalent element and n is between about 80 and about 250. In the process, a mixture capable of forming said material is prepared comprising sources of alkali or alkaline earth metal (M), an oxide of trivalent element (X), an oxide of tetravalent element (Y), hydroxyl ions (OFF), water and tetraethylammonium cations (R), wherein said mixture has a composition, in terms of mole ratios, within the following ranges: YO2/X2O3=100 to 300; H2O/YO2=5 to 15; OH?/YO2=0.10 to 0.30; M/YO2=0.05 to 0.30; and R/YO2=0.10 to 0.20. The mixture is reacted at a temperature of at least about 300° F. (149° C.) for a time of less than about 50 hours to form crystals of the crystalline material and the crystalline material is then recovered.
    Type: Application
    Filed: August 4, 2010
    Publication date: February 10, 2011
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Wenyih Frank Lai, Jeffrey T. Elks, Robert E. Kay
  • Patent number: 7867937
    Abstract: Catalysts for experimentation are produced having a controlled matrix pore structure. The manufacturing process utilizes tape casting in the drying procedure in which a catalyst slurry is cast on a substrate and dried at a temperature of between about 50° C. to 200° C. for a period of time of about 0.1 to 1.0 hour. The dried catalyst particles can be removed from the substrate by several techniques, including scraping, burning, and deforming the substrate material. The resulting catalytic particles can be produced in an amount of about ca. 3 g to 300 g from slurries with volumes between 5 cc to 500 cc, which are suitable for small scale FCC reactors and for high throughput experimentation.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: January 11, 2011
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: William A. Wachter, Jeffrey T. Elks, Brenda A. Raich, Theodore E. Datz, Mary T. Van Nostrand, Gordon F. Stuntz, David O. Marler, Nicholas Rollman
  • Patent number: 7834218
    Abstract: A process for producing phenol and methyl ethyl ketone comprises contacting benzene and a C4 alkylating agent under alkylation conditions and in the presence of an alkylation catalyst comprising at least one molecular sieve of the MCM-22 family to produce an alkylation effluent comprising secbutylbenzene; wherein the contacting is conducted in a plurality of reaction zones and the C4 alkylating agent secbutylbenzene fraction is recovered from the alkylation effluent and comprises at least 95 wt % sec-butylbenzene, less than 100 wt ppm of C8+ olefins, and less than 0.5 wt % of isobutylbenzene and tert-butylbenzene. The sec-butylbenzene fraction is then oxidized to produce sec-butylbenzene hydroperoxide and the hydroperoxide is cleaved to produce phenol and methyl ethyl ketene.
    Type: Grant
    Filed: February 8, 2007
    Date of Patent: November 16, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jihad M. Dakka, Jon E. Stanat, Francisco M. Benitez, John S. Buchanan, Jane C. Cheng, Jeffrey T. Elks
  • Publication number: 20100036184
    Abstract: This disclosure relates to a catalyst composition comprising (a) a crystalline MCM-49 molecular sieve; and (b) a binder comprising at least 1 wt. % of a titanium compound. In one aspect of this disclosure, the titanium compound comprises at least one of titanium oxide, titanium hydroxide, titanium sulfate, titanium phosphate, or any combination thereof. In another aspect of this disclosure, the catalyst composition further comprises a crystalline MCM-22 family molecular sieve comprising at least one of MCM-22, MCM-36, MCM-49, MCM-56, ITQ-1, ITQ-2, ITQ-30, PSH-3, ERB-1, SSZ-25, or any combination thereof. In other embodiments, this disclosure relates to a process for preparing the catalyst composition of this disclosure, the process comprises (a) providing the crystalline MCM-49 molecular sieve and the binder comprising at least 1 wt. % of a titanium compound to form a mixture; and (b) forming the mixture into the catalyst composition. In a preferred embodiment, the forming step comprises extruding.
    Type: Application
    Filed: December 20, 2007
    Publication date: February 11, 2010
    Inventors: Christine N. Elia, Frederick Y. Lo, Jeffrey T. Elks, Darryl D. Lacy, Mohan Kalyanaraman
  • Publication number: 20090187047
    Abstract: A process for producing phenol and methyl ethyl ketone comprises contacting benzene and a C4 alkylating agent under alkylation conditions and in the presence of an alkylation catalyst comprising at least one molecular sieve of the MCM-22 family to produce an alkylation effluent comprising secbutylbenzene; wherein the contacting is conducted in a plurality of reaction zones and the C4 alkylating agent secbutylbenzene fraction is recovered from the alkylation effluent and comprises at least 95 wt % sec-butylbenzene, less than 100 wt ppm of C8+ olefins, and less than 0.5 wt % of isobutylbenzene and tert-butylbenzene. The sec-butylbenzene fraction is then oxidized to produce sec-butylbenzene hydroperoxide and the hydroperoxide is cleaved to produce phenol and methyl ethyl ketone.
    Type: Application
    Filed: February 8, 2007
    Publication date: July 23, 2009
    Inventors: Jihad M. Dakka, Jon E. Stanat, Francisco M. Benitez, John S. Buchanan, Jane C. Cheng, Jeffrey T. Elks
  • Publication number: 20090163608
    Abstract: Provided is a process for oligomerizing n-olefins. The process has the step of reacting (oligomerizing) an amount of one or more n-olefins in the presence of a catalytically effective amount of a two or more metal oxides at a temperature effective to effect oligomerization. The two or more metal oxides are represented by the formula MOn/M?On?. M and M?, are, independently, selected from the group consisting of Al, Ce, Fe, P, W, Zr, and combinations thereof. M and M? are different metals or combinations of metals. “n” and “n?” are positive numbers and vary stoichiometrically depending on the valency of M and M?, respectively. Provided is also a process for alkylation of an alkylatable aromatic compound. The process has the step of contacting an amount of one or more n-olefins with an amount of aromatic compound in the presence of a catalytically effective amount of the two or more metal oxides at a temperature effective to effect alkylation of the aromatic compound.
    Type: Application
    Filed: December 21, 2007
    Publication date: June 25, 2009
    Inventors: Jihad Mohammed Dakka, Jeffrey T. Elks, James C. Vartuli
  • Patent number: 7538066
    Abstract: This invention relates to supported multi-metallic catalysts for use in the hydroprocessing of hydrocarbon feeds, as well as a method for preparing such catalysts. The catalysts are prepared from a catalyst precursor comprised of at least one Group VIII metal and a Group VI metal and an organic agent selected from the group consisting of amino alcohols and amino acids.
    Type: Grant
    Filed: September 29, 2005
    Date of Patent: May 26, 2009
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Stuart L. Soled, Sabato Miseo, Joseph E. Baumgartner, Christine E. Kliewer, Jeffrey T. Elks
  • Publication number: 20080146435
    Abstract: Catalysts for experimentation are produced having a controlled matrix pore structure. The manufacturing process utilizes tape casting in the drying procedure in which a catalyst slurry is cast on a substrate and dried at a temperature of between about 50° C. to 200° C. for a period of time of about 0.1 to 1.0 hour. The dried catalyst particles can be removed from the substrate by several techniques, including scraping, burning, and deforming the substrate material. The resulting catalytic particles can be produced in an amount of about ca. 3g to 300g from slurries with volumes between 5 cc to 500 cc, which are suitable for small scale FCC reactors and for high throughput experimentation.
    Type: Application
    Filed: December 11, 2007
    Publication date: June 19, 2008
    Inventors: William A. Wachter, Jeffrey T. Elks, Brenda A. Raich, Theodore E. Datz, Mary T. Van Nostrand, Gordon F. Stuntz, David O. Marler, Nicholas Rollman
  • Patent number: 7381676
    Abstract: This disclosure relates to a catalyst composition comprising (a) a crystalline MCM-49 molecular sieve; and (b) a binder comprising at least 1 wt. % of a titanium compound. In one aspect of this disclosure, the titanium compound comprises at least one of titanium oxide, titanium hydroxide, titanium sulfate, titanium phosphate, or any combination thereof. In another aspect of this disclosure, the catalyst composition further comprises a crystalline MCM-22 family molecular sieve comprising at least one of MCM-22, MCM-36, MCM-49, MCM-56, ITQ-1, ITQ-2, ITQ-30, PSH-3, ERB-1, SSZ-25, or any combination thereof. In other embodiments, this disclosure relates to a process for preparing the catalyst composition of this disclosure, the process comprises (a) providing the crystalline MCM-49 molecular sieve and the binder comprising at least 1 wt. % of a titanium compound to form a mixture; and (b) forming the mixture into the catalyst composition. In a preferred embodiment, the forming step comprises extruding.
    Type: Grant
    Filed: January 16, 2007
    Date of Patent: June 3, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Christine N. Elia, Frederick Y. Lo, Jeffrey T. Elks, Darryl D. Lacy, Mohan Kalyanaraman
  • Patent number: 7282192
    Abstract: The invention relates to a composition of matter comprising at least one metal from Group 3, at least one metal from Group 4, sulfur and oxygen, particularly useful as a catalyst for ether decomposition to alkanols and alkenes.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: October 16, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James Clarke Vartuli, Jeffrey T. Elks, El-Mekki El-Malki, William G. Borghard, Doron Levin, Stephen John McCarthy
  • Patent number: 6153552
    Abstract: Catalysts that are useful for hydrocarbon conversions and oxygenate conversions, and a method for making such catalysts. The method for making the catalysts comprises forming a mixture comprising molecular sieves comprising pores having a diameter smaller than about 10 Angstroms, an inorganic sol, and an external phosphorus source, and drying the mixture.
    Type: Grant
    Filed: October 29, 1997
    Date of Patent: November 28, 2000
    Assignee: Exxon Chemical Patents Inc.
    Inventors: William A. Wachter, Jeffrey T. Elks, Stephen Neil Vaughn