Patents by Inventor Jeng-Chyan LIN

Jeng-Chyan LIN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10594143
    Abstract: A charging method for a battery set with a plurality of battery cells, having steps of performing a serial charging on the battery cells; determining whether one of the battery cells reaches a saturation voltage; and performing a uniform separately charging on the battery cells when one of the battery cells reaches the saturation voltage, wherein the uniform separately charging comprises sorting the battery cells according to cell voltages of the battery cells; and sequentially and separately charging the sorted battery cells to a Nth segmented voltage in a Nth segmentation, wherein N is a positive integer from 1 to K, and K is a positive integer larger than 1. The charging method of the present disclosure can reduce the temperature rising of the battery cell due to the longtime charging.
    Type: Grant
    Filed: December 11, 2017
    Date of Patent: March 17, 2020
    Assignee: NATIONAL CHUNG SHAN INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Wei-Min Hsiao, Jeng-Chyan Lin, Kuo-Kuang Jen, Fu-Min Fang
  • Patent number: 10404527
    Abstract: An electrical system having a master node, at least one slave node and a bus linked to both of the master node and the slave node is illustrated. The master node check whether a reception register of the slave node does not receives a new data for a first time period, and resets the slave node while the reception register of the slave node does not receives the new data for the first time period; and the slave node checks whether the reception register of the slave node does not receives the new data for a second time period, and resets the slave node itself while the reception register of the slave node does not receives the new data for the second time period. Therefore, the communication stability of the electrical system can be enhanced.
    Type: Grant
    Filed: December 11, 2017
    Date of Patent: September 3, 2019
    Assignee: NATIONAL CHUNG SHAN INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Wei-Min Hsiao, Jeng-Chyan Lin, Kuo-Kuang Jen, Fu-Min Fang
  • Patent number: 10377262
    Abstract: Electric vehicle range extending apparatus includes a step-down voltage provision unit, cell voltage sensing unit, cell switching unit, and control unit. The step-down voltage provision unit has an input port to be coupled to the main battery pack or an auxiliary battery pack, and an output port to output a power balancing signal. The cell voltage sensing unit is for being coupled to the battery cells and sensing individual voltages of the battery cells. The cell switching unit, including a plurality of switches, is coupled to the battery cells respectively, and coupled to the output port. The control unit, coupled to the cell voltage sensing unit, step-down voltage provision unit, and cell switching unit, is for controlling the cell switching unit based on the individual voltages of the battery cells so as to apply the power balancing signal to at least one of the battery cells selectively.
    Type: Grant
    Filed: December 6, 2016
    Date of Patent: August 13, 2019
    Assignee: NATIONAL CHUNG SHAN INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Wei-Min Hsiao, Kuo-Kuang Jen, Jeng-Chyan Lin, Hsun-Ming Hsien, Fu-Min Fang
  • Publication number: 20190181654
    Abstract: A charging method for a battery set with a plurality of battery cells, having steps of performing a serial charging on the battery cells; determining whether one of the battery cells reaches a saturation voltage; and performing a uniform separately charging on the battery cells when one of the battery cells reaches the saturation voltage, wherein the uniform separately charging comprises sorting the battery cells according to cell voltages of the battery cells; and sequentially and separately charging the sorted battery cells to a Nth segmented voltage in a Nth segmentation, wherein N is a positive integer from 1 to K, and K is a positive integer larger than 1. The charging method of the present disclosure can reduce the temperature rising of the battery cell due to the longtime charging.
    Type: Application
    Filed: December 11, 2017
    Publication date: June 13, 2019
    Inventors: WEI-MIN HSIAO, JENG-CHYAN LIN, KUO-KUANG JEN, FU-MIN FANG
  • Publication number: 20190182102
    Abstract: An electrical system having a master node, at least one slave node and a bus linked to both of the master node and the slave node is illustrated. The master node check whether a reception register of the slave node does not receives a new data for a first time period, and resets the slave node while the reception register of the slave node does not receives the new data for the first time period; and the slave node checks whether the reception register of the slave node does not receives the new data for a second time period, and resets the slave node itself while the reception register of the slave node does not receives the new data for the second time period. Therefore, the communication stability of the electrical system can be enhanced.
    Type: Application
    Filed: December 11, 2017
    Publication date: June 13, 2019
    Inventors: WEI-MIN HSIAO, JENG-CHYAN LIN, KUO-KUANG JEN, FU-MIN FANG
  • Patent number: 10063070
    Abstract: A battery active-balancing system comprises an external balancing power; a buck converter having a first side-winding and a second side-winding induced thereby, the first side-winding and the second side-winding each having a positive terminal and a negative terminal; a battery comprising series-connected cell-units each having a positive terminal and a negative terminal; a cell voltage-sensing unit coupled to the battery to sense a voltage of each cell unit of the series-connected cell-units; a main switch component coupled to the first side-winding and the battery in an ON state, or coupled to the first side-winding and the external balancing power in an OFF state; a cell-switch unit comprising first cell-switch components and second cell-switch components, wherein each of the first cell-switch components is coupled to the positive terminal of corresponding one cell-unit and the positive terminal of the second side-winding, and each of the second cell-switch components is coupled to the negative terminal of
    Type: Grant
    Filed: November 25, 2016
    Date of Patent: August 28, 2018
    Assignee: NATIONAL CHUNG SHAN INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Wei-Min Hsiao, Kuo-Kuang Jen, Jeng-Chyan Lin, Hsun-Ming Hsien, Fu-Min Fang
  • Publication number: 20180154794
    Abstract: Electric vehicle range extending apparatus includes a step-down voltage provision unit, cell voltage sensing unit, cell switching unit, and control unit. The step-down voltage provision unit has an input port to be coupled to the main battery pack or an auxiliary battery pack, and an output port to output a power balancing signal. The cell voltage sensing unit is for being coupled to the battery cells and sensing individual voltages of the battery cells. The cell switching unit, including a plurality of switches, is coupled to the battery cells respectively, and coupled to the output port. The control unit, coupled to the cell voltage sensing unit, step-down voltage provision unit, and cell switching unit, is for controlling the cell switching unit based on the individual voltages of the battery cells so as to apply the power balancing signal to at least one of the battery cells selectively.
    Type: Application
    Filed: December 6, 2016
    Publication date: June 7, 2018
    Inventors: WEI-MIN HSIAO, KUO-KUANG JEN, JENG-CHYAN LIN, HSUN-MING HSIEN, FU-MIN FANG
  • Publication number: 20180152028
    Abstract: A battery active-balancing system comprises an external balancing power; a buck converter having a first side-winding and second side-winding induced thereby, the first and second side-windings each having positive and negative terminals; a battery comprising series-connected cell-units each having positive and negative terminals; a cell voltage-sensing unit coupled to the battery to sense voltage of the cell-units; a main switch component coupled to first side-winding, battery, and external balancing power, to first side-winding and external balancing power in ON state, and to first side-winding and battery in OFF state; a cell-switch unit comprising first and second cell-switch components, with first cell-switch components coupled to positive terminals of the cell-units and second side-winding, respectively, and second cell-switch components coupled to negative terminals of the cell-units and second side-winding, respectively; and a microcontroller for controlling main switch component and cell-switch unit,
    Type: Application
    Filed: November 25, 2016
    Publication date: May 31, 2018
    Inventors: WEI-MIN HSIAO, KUO-KUANG JEN, JENG-CHYAN LIN, HSUN-MING HSIEN, FU-MIN FANG
  • Patent number: 9118190
    Abstract: A charging balancing system and method thereof based on a battery operating process and are disclosed. This is done by detecting a state of all cells in a detecting battery assembly to generate detection parameters, analyzing the detection parameters to produce an operating process, selecting at least one of residual power estimation methods according to the operating process, so as to calculate a residual power of each cell, and adjusting the charging current and charging time for each cell according to the residual power. As such, the efficiency of charging balancing is promoted.
    Type: Grant
    Filed: October 30, 2013
    Date of Patent: August 25, 2015
    Assignee: Metal Industries Research & Development Centre
    Inventors: Sheng-Wei Chen, Kuan-Yuen Liao, Wen-Jiun Liu, Jeng-Chyan Lin
  • Publication number: 20150115892
    Abstract: A charging balancing system and method thereof based on a battery operating process and are disclosed. This is done by detecting a state of all cells in a detecting battery assembly to generate detection parameters, analyzing the detection parameters to produce an operating process, selecting at least one of residual power estimation methods according to the operating process, so as to calculate a residual power of each cell, and adjusting the charging current and charging time for each cell according to the residual power. As such, the efficiency of charging balancing is promoted.
    Type: Application
    Filed: October 30, 2013
    Publication date: April 30, 2015
    Applicant: METAL INDUSTRIES RESEARCH & DEVELOPMENT CENTRE
    Inventors: Sheng-Wei CHEN, Kuan-Yuen LIAO, Wen-Jiun LIU, Jeng-Chyan LIN