Patents by Inventor Jenna Leigh Balestrini

Jenna Leigh Balestrini has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230183631
    Abstract: Transfer of genetic and other materials to cells is conducted in a hands-free, automated and continuous process that includes flowing the cells between electroporation electrodes to facilitate delivery of a payload into the cells, while acoustophoretically focusing the cells. Also described is a control method for the acoustophoretic focusing of cells that includes detecting locations of cells flowing through a channel, such as with an image analytics system, and modulating a drive signal to an acoustic transducer to change the locations of the cells flowing in the channel. Finally, an electroporation driver module is described that uses a digital to analog converter for generating an electroporation waveform and an amplifier for amplifying the electroporation waveform for application to electroporation electrodes.
    Type: Application
    Filed: December 19, 2022
    Publication date: June 15, 2023
    Applicant: The Charles Stark Draper Laboratory, Inc.
    Inventors: Vishal Tandon, Charles A. Lissandrello, Ryan A. Dubay, Rebecca Christianson, Jenna Leigh Balestrini, Peter Hsi, Jason Fiering
  • Patent number: 11591561
    Abstract: Transfer of genetic and other materials to cells is conducted in a hands-free, automated and continuous process that includes flowing the cells between electroporation electrodes to facilitate delivery of a payload into the cells, while acoustophoretically focusing the cells. Also described is a control method for the acoustophoretic focusing of cells that includes detecting locations of cells flowing through a channel, such as with an image analytics system, and modulating a drive signal to an acoustic transducer to change the locations of the cells flowing in the channel. Finally, an electroporation driver module is described that uses a digital to analog converter for generating an electroporation waveform and an amplifier for amplifying the electroporation waveform for application to electroporation electrodes.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: February 28, 2023
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Vishal Tandon, Charles A. Lissandrello, Ryan A. Dubay, Rebecca Christianson, Jenna Leigh Balestrini, Peter Hsi, Jason Fiering
  • Publication number: 20190292565
    Abstract: A system for sequential exposure of particles to different fluid streams includes an acoustic actuator device for acoustically driving one or more substrates and a microchannel device of the one or more substrates that receive particles in a first flowing fluid, moves the particles to a second flowing fluid, then moves the particles out of the second flowing fluid using acoustic radiation generated by the acoustic actuator device. The system can control residence times in the streams. According to one use, the first flowing fluid is a cell buffer and the second flowing media is an electroporation buffer. An electroporation system is placed in or downstream of the acoustic actuator device. However, in other uses, the second flowing media might be a wash buffer.
    Type: Application
    Filed: March 20, 2019
    Publication date: September 26, 2019
    Inventors: Vishal Tandon, Charles A. Lissandrello, Jenna Leigh Balestrini, Ryan A. Dubay
  • Publication number: 20190292510
    Abstract: A viral transduction and/or electroporation device has s a membrane separating two chambers and two electroporation electrodes for the chambers. An electrical voltage source is used for establishing an electrical field across the membrane and between the two electrodes. In operation, fluid is flowed into the chambers including fluid containing electroporation cargo and viral transduction solution and an electrical field is established across the membrane and between the electrodes to electroporate cells pinned to the membrane and transfecting the cells.
    Type: Application
    Filed: March 20, 2019
    Publication date: September 26, 2019
    Inventors: Vishal Tandon, Jonathan R. Coppeta, Kenneth Kotz, Heena K. Mutha, Jenna Leigh Balestrini
  • Publication number: 20190119624
    Abstract: Transfer of genetic and other materials to cells is conducted in a hands-free, automated and continuous process that includes flowing the cells between electroporation electrodes to facilitate delivery of a payload into the cells, while acoustophoretically focusing the cells. Also described is a control method for the acoustophoretic focusing of cells that includes detecting locations of cells flowing through a channel, such as with an image analytics system, and modulating a drive signal to an acoustic transducer to change the locations of the cells flowing in the channel. Finally, an electroporation driver module is described that uses a digital to analog converter for generating an electroporation waveform and an amplifier for amplifying the electroporation waveform for application to electroporation electrodes.
    Type: Application
    Filed: October 23, 2018
    Publication date: April 25, 2019
    Inventors: Vishal Tandon, Charles A. Lissandrello, Ryan A. Dubay, Rebecca Christianson, Jenna Leigh Balestrini, Peter Hsi, Jason Fiering