Patents by Inventor Jennifer Lund

Jennifer Lund has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7581314
    Abstract: A semiconductor micro-electromechanical system (MEMS) switch provided with noble metal contacts that act as an oxygen barrier to copper electrodes is described. The MEMS switch is fully integrated into a CMOS semiconductor fabrication line. The integration techniques, materials and processes are fully compatible with copper chip metallization processes and are typically, a low cost and a low temperature process (below 400° C.). The MEMS switch includes: a movable beam within a cavity, the movable beam being anchored to a wall of the cavity at one or both ends of the beam; a first electrode embedded in the movable beam; and a second electrode embedded in an wall of the cavity and facing the first electrode, wherein the first and second electrodes are respectively capped by the noble metal contact.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: September 1, 2009
    Assignee: International Business Machines Corporation
    Inventors: Hariklia Deligianni, Panayotis Andricacos, L. Paivikki Buchwalter, John M. Cotte, Christopher Jahnes, Mahadevaiyer Krishnan, John H. Magerlein, Kenneth Stein, Richard P. Volant, James A. Tornello, Jennifer Lund
  • Patent number: 7202764
    Abstract: A semiconductor micro-electromechanical system (MEMS) switch provided with noble metal contacts that act as an oxygen barrier to copper electrodes is described. The MEMS switch is fully integrated into a CMOS semiconductor fabrication line. The integration techniques, materials and processes are fully compatible with copper chip metallization processes and are typically, a low cost and a low temperature process (below 400° C.). The MEMS switch includes: a movable beam within a cavity, the movable beam being anchored to a wall of the cavity at one or both ends of the beam; a first electrode embedded in the movable beam; and a second electrode embedded in an wall of the cavity and facing the first electrode, wherein the first and second electrodes are respectively capped by the noble metal contact.
    Type: Grant
    Filed: July 8, 2003
    Date of Patent: April 10, 2007
    Assignee: International Business Machines Corporation
    Inventors: Hariklia Deligianni, Panayotis Andricacos, L. Paivikki Buchwalter, John M. Cotte, Christopher Jahnes, Mahadevaiyer Krishnan, John H. Magerlein, Kenneth Stein, Richard P. Volant, James A. Tornello, Jennifer Lund
  • Publication number: 20060164194
    Abstract: A semiconductor micro-electromechanical system (MEMS) switch provided with noble metal contacts that act as an oxygen barrier to copper electrodes is described. The MEMS switch is fully integrated into a CMOS semiconductor fabrication line. The integration techniques, materials and processes are fully compatible with copper chip metallization processes and are typically, a low cost and a low temperature process (below 400° C.). The MEMS switch includes: a movable beam within a cavity, the movable beam being anchored to a wall of the cavity at one or both ends of the beam; a first electrode embedded in the movable beam; and a second electrode embedded in an wall of the cavity and facing the first electrode, wherein the first and second electrodes are respectively capped by the noble metal contact.
    Type: Application
    Filed: February 21, 2006
    Publication date: July 27, 2006
    Inventors: Hariklia Deligianni, Panayotis Andricacos, L. Paivikki Buchwalter, John Cotte, Christopher Jahnes, Mahadevaiyer Krishnan, John Magerlein, Kenneth Stein, Richard Volant, James Tornello, Jennifer Lund
  • Publication number: 20060017533
    Abstract: A micro-electromechanical (MEM) RF switch provided with a deflectable membrane (60) activates a switch contact or plunger (40). The membrane incorporates interdigitated metal electrodes (70) which cause a stress gradient in the membrane when activated by way of a DC electric field. The stress gradient results in a predictable bending or displacement of the membrane (60), and is used to mechanically displace the switch contact (30). An RF gap area (25) located within the cavity (250) is totally segregated from the gaps (71) between the interdigitated metal electrodes (70). The membrane is electrostatically displaced in two opposing directions, thereby aiding to activate and deactivate the switch.
    Type: Application
    Filed: August 26, 2002
    Publication date: January 26, 2006
    Inventors: Christopher Jahnes, Jennifer Lund, Katherine Saenger, Richard Volant
  • Publication number: 20050156695
    Abstract: A microelectromechanical switch including: at least one pair of actuator electrodes; at least one input electrode and at least one output electrode for input and output, respectively, of a radio frequency signal; and a beam movable by an attraction between the at least one pair of actuator electrodes, the movable beam having at least a portion electrically connected to the at least one input electrode and to the at least one output electrode when moved by the attraction between the at least one pair of actuator electrodes to make an electrical connection between the at least one input and output electrodes; wherein the at least one pair of actuator electrodes are electrically isolated from each of the at least one input and output electrodes. The microelectromechanical switch can be configured in single or multiple-poles and/or single or multiple throws.
    Type: Application
    Filed: February 8, 2005
    Publication date: July 21, 2005
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Panayotis Andricacos, L. Buchwalter, Hariklia Deligianni, Robert Groves, Christopher Jahnes, Jennifer Lund, Michael Meixner, David Seeger, Timothy Sullivan, Ping-Chuan Wang
  • Publication number: 20050024169
    Abstract: A switch comprising a substrate, an elongated movable part, a pair of electrical contacts disposed at one side of said part, an actuation electrode disposed at the one side of the part and separated from the pair of electrical contacts, wherein the part, the contacts and the electrode are disposed on the substrate, wherein the elongated movable part is arranged and dimensioned such that the part is movable in a generally lateral direction toward the contacts; the movable part includes a central elongated member fixed to a head having an electrical contact disposed at the one side. One end of the movable part is attached to the substrate by means of various anchoring arrangements.
    Type: Application
    Filed: August 11, 2004
    Publication date: February 3, 2005
    Inventors: Hariklia Deligianni, Christopher Jahnes, Jennifer Lund, Lawrence Larson
  • Publication number: 20050007217
    Abstract: A semiconductor micro-electromechanical system (MEMS) switch provided with noble metal contacts that act as an oxygen barrier to copper electrodes is described. The MEMS switch is fully integrated into a CMOS semiconductor fabrication line. The integration techniques, materials and processes are fully compatible with copper chip metallization processes and are typically, a low cost and a low temperature process (below 400°0 C.). The MEMS switch includes: a movable beam within a cavity, the movable beam being anchored to a wall of the cavity at one or both ends of the beam; a first electrode embedded in the movable beam; and a second electrode embedded in an wall of the cavity and facing the first electrode, wherein the first and second electrodes are respectively capped by the noble metal contact.
    Type: Application
    Filed: July 8, 2003
    Publication date: January 13, 2005
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hariklia Deligianni, Panayotis Andricacos, L. Buchwalter, John Cotte, Christopher Jahnes, Mahadevaiyer Krishnan, John Magerlein, Kenneth Stein, Richard Volant, James Tornello, Jennifer Lund