Patents by Inventor Jens Schrooten

Jens Schrooten has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210230328
    Abstract: Method of reducing the amount of a fluorinated acid or its salts from a fluoropolymer, the method comprises: (i) providing a composition containing particles of the fluoropolymer, (ii) contacting the fluoropolymer particles with a treatment composition comprising at least one organic liquid; and, optionally, further comprising (iii) isolating, washing and subjecting the fluoropolymer to drying treatment, and wherein the fluoropolymer contains units derived from tetrafluoroethene (TFE) and is selected from the group of fluoroelastomers and the group of fluoropolymers having a melting point of less than 150° C. Also provided are fluoropolymer and compositions containing such polymers that are essentially free of fluorinated acids and their salts.
    Type: Application
    Filed: May 8, 2019
    Publication date: July 29, 2021
    Inventors: Klaus Hintzer, Florian D. Jochum, Herbert Koenigsmann, Jens Schrooten, Tilman C. Zipplies, Karl D. Weilandt
  • Publication number: 20210189031
    Abstract: Described herein is a fluorothermoplast with long chain branching and a method of making such a polymer using a modifier of the formula: F2C?CF(CF2)a(O)RfH wherein a is 0 or 1 and Rf is a linear or branched fluorinated alkylene group comprising 1 to 5 carbon atoms and optionally comprising at least one ether linkage and optionally comprising 1 or 2 hydrogen atoms. This fluorothermoplast may be processed through polymer melt processes, such as blow molding, injection molding, film extrusion, and wire extrusion. Preferably, said polymer contains structural units derived from tetrafluoroethylene and a perfluorinated olefin or ether, and comprises chain branching.
    Type: Application
    Filed: October 23, 2018
    Publication date: June 24, 2021
    Inventors: Klaus Hintzer, Harald Kaspar, Kai Helmut Lochhaas, Jens Schrooten, Helmut Traunspurger, Tilman C. Zipplies
  • Publication number: 20210155790
    Abstract: A tetrafluoroethene copolymer having a melting point of from about 240° C. to 325° C., a melt flow index (MFI at 372° C. and 5 kg load) of 0.5-80 grams/10 minutes and having at least 70% by weight of units derived from tetrafluoroethene and further comprising units derived from at least one perfluorinated alkyl allyl ether (PAAE) comonomer corresponding to the general formula: CF2?CF—CF2—O—Rf (I) where Rf is a perfluorinated alkyl residue having from 1 to 10 carbon atoms and wherein the alkyl chain of the residue may be interrupted once or more than once by an oxygen atom and further, optionally, comprising units derived from perfluoromethyl vinyl ether (PMVE), perfluoroethyl vinyl ether (PEVE) and a combination thereof and wherein the content of units CA derived PAAEs and, optionally, PMVE, PEVE or a combination thereof, is at least 1.0% by weight.
    Type: Application
    Filed: February 15, 2019
    Publication date: May 27, 2021
    Inventors: Klaus Hintzer, Harald Kaspar, Jens Schrooten, Tilman C. Zipplies, Florian Jochum, Michael C. Dadalas, Tatsuo Fukushi, Naiyong Jing, Karl D. Weilandt
  • Patent number: 10844152
    Abstract: A copolymer having tetrafluoroethylene units and units independently represented by formula (I) in a range from 0.02 to 2 mole percent, based on the total amount of the copolymer. Rf is a linear or branched perfluoroalkyl group having from 1 to 8 carbon atoms and optionally interrupted by one or more —0— groups, n is independently from 1 to 6, and z is 0, 1, or 2. The copolymer has a melt flow index in a range from 20 grams per 10 minutes to 40 grams per 10 minutes. The copolymer can be extruded to make articles, such as insulated cables. A method of making the copolymer is also disclosed.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: November 24, 2020
    Assignee: 3M Innovative Properties Company
    Inventors: Klaus Hintzer, Harald Kaspar, Kai H. Lochhaas, Jens Schrooten, Tilman C. Zipplies, Denis Duchesne
  • Patent number: 10717795
    Abstract: A copolymer having tetrafluoroethylene units, hexafluoropropylene units, and units independently represented by formula in a range from 0.001 to 2 mole percent, based on the total amount of the copolymer. In these units, a is 0 or 1, each b is independently from 1 to 4, c is 0 to 4, d is 0 or 1, and e is 1 to 6. In the —SO2X groups, X is independently —F, —NH2, —OH, or —OZ, wherein Z is independently a metallic cation or a quaternary ammonium cation. The copolymer has a melt flow index in a range from 20 grams per 10 minutes to 40 grams per 10 minutes. The copolymer can be extruded to make articles, such as insulated cables. A method of making the copolymer is also disclosed.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: July 21, 2020
    Assignee: 3M Innovative Properties Company
    Inventors: Denis Duchesne, Klaus Hintzer, Harald Kaspar, Kai H. Lochhaas, Jens Schrooten, Tilman C. Zipplies
  • Patent number: 10676555
    Abstract: A copolymer having tetrafluoroethylene units and units independently represented by formula (I) in a range from 0.02 to 2 mole percent, based on the total amount of the copolymer. Rf is a linear or branched perfluoroalkyl group having from 1 to 8 carbon atoms and optionally interrupted by one or more —O— groups, each n is independently from 1 to 6, m is 0 or 1, and z is 0, 1, or 2. The copolymer has a melt flow index in a range from 20 grams per 10 minutes to 40 grams per 10 minutes and has in a range from 2 to 200 —SO2X groups per 106 carbon atoms and up to 100 unstable end groups per 106 carbon atoms. The copolymer can be extruded to make articles, such as insulated cables. A method of making the copolymer is also disclosed.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: June 9, 2020
    Assignee: 3M Innovative Properties Company
    Inventors: Denis Duchesne, Klaus Hintzer, Harald Kaspar, Kai H. Lochhaas, Jens Schrooten, Tilman C. Zipplies
  • Patent number: 10227484
    Abstract: Described herein is a composition comprising (i) a hydrofluorothermoplastic polymer, wherein the hydrofluorothermoplastic polymer is derived from: (a) 50-85 mol % tetrafluoroethene; (b) 2-15 mol % hexafluoropropene; (c) 10-35 mol % vinylidene fluoride; and (d) 0.1 to 5 mol % of a bromine-containing monomer; and (ii) a perhalogenated thermoplastic polymer. Such compositions can be used in multilayer constructions in, for example, fuel hose applications.
    Type: Grant
    Filed: August 13, 2015
    Date of Patent: March 12, 2019
    Assignee: 3M Innovative Properties Company
    Inventors: Lisa P. Chen, Klaus Hintzer, Harald Kaspar, Kai H. Lochhaas, Mark W. Muggli, Jens Schrooten, Allen M. Sohlo, Helmut Traunspurger, Karl D. Weilandt, Tilman C. Zipplies
  • Patent number: 10087322
    Abstract: Described herein is a composition comprising a fluorothermoplastic polymer, wherein the fluorothermoplastic polymer is derived from: (a) 60-85 mol % tetrafluoroethene; (b) 2-12 mol % hexafluoropropene; (c) 10-30 mol % vinylidene fluoride; (d) 0.2 to 5 mol % of a bromine-containing monomer. Such compositions can be used in multilayer constructions in, for example, fuel hose applications.
    Type: Grant
    Filed: August 11, 2015
    Date of Patent: October 2, 2018
    Assignee: 3M Innovative Properties Company
    Inventors: Lisa P. Chen, Klaus Hintzer, Harald Kaspar, Kai H. Lochhaas, Mark W. Muggli, Jens Schrooten, Allen M. Sohlo, Helmut Traunspurger, Karl D. Weilandt, Tilman C. Zipplies
  • Publication number: 20180057625
    Abstract: A copolymer having tetrafluoroethylene units and units independently represented by formula (I) in a range from 0.02 to 2 mole percent, based on the total amount of the copolymer. Rf is a linear or branched perfluoroalkyl group having from 1 to 8 carbon atoms and optionally interrupted by one or more —0— groups, n is independently from 1 to 6, and z is 0, 1, or 2. The copolymer has a melt flow index in a range from 20 grams per 10 minutes to 40 grams per 10 minutes. The copolymer can be extruded to make articles, such as insulated cables. A method of making the copolymer is also disclosed.
    Type: Application
    Filed: February 12, 2016
    Publication date: March 1, 2018
    Inventors: Klaus Hintzer, Harald Kaspar, Kai H. Lochhaas, Jens Schrooten, Tilman C. Zipplies, Denis Duchesne
  • Publication number: 20180030183
    Abstract: A copolymer having tetrafluoroethylene units and units independently represented by formula (I) in a range from 0.02 to 2 mole percent, based on the total amount of the copolymer. Rf is a linear or branched perfluoroalkyl group having from 1 to 8 carbon atoms and optionally interrupted by one or more —O— groups, each n is independently from 1 to 6, m is 0 or 1, and z is 0, 1, or 2. The copolymer has a melt flow index in a range from 20 grams per 10 minutes to 40 grams per 10 minutes and has in a range from 2 to 200 —SO2X groups per 106 carbon atoms and up to 100 unstable end groups per 106 carbon atoms. The copolymer can be extruded to make articles, such as insulated cables. A method of making the copolymer is also disclosed.
    Type: Application
    Filed: February 12, 2016
    Publication date: February 1, 2018
    Inventors: Denis Duchesne, Klaus Hintzer, Harald Kaspar, Kai H. Lochhaas, Jens Schrooten, Tilman C. Zipplies
  • Publication number: 20180016375
    Abstract: A copolymer having tetrafluoroethylene units, hexafluoropropylene units, and units independently represented by formula in a range from 0.001 to 2 mole percent, based on the total amount of the copolymer. In these units, a is 0 or 1, each b is independently from 1 to 4, c is 0 to 4, d is 0 or 1, and e is 1 to 6. In the —SO2X groups, X is independently —F, —NH2, —OH, or —OZ, wherein Z is independently a metallic cation or a quaternary ammonium cation. The copolymer has a melt flow index in a range from 20 grams per 10 minutes to 40 grams per 10 minutes. The copolymer can be extruded to make articles, such as insulated cables. A method of making the copolymer is also disclosed.
    Type: Application
    Filed: February 12, 2016
    Publication date: January 18, 2018
    Inventors: Denis Duchesne, Klaus Hintzer, Harald Kaspar, Kai H. Lochhaas, Jens Schrooten, Tilman C. Zipplies
  • Publication number: 20170226336
    Abstract: Described herein is a composition comprising (i) a hydrofluorothermoplastic polymer, wherein the hydrofluorothermoplastic polymer is derived from: (a) 50-85 mol % tetrafluoroethene; (b) 2-15 mol % hexafluoropropene; (c) 10-35 mol % vinylidene fluoride; and (d) 0.1 to 5 mol % of a bromine-containing monomer; and (ii) a perhalogenated thermoplastic polymer. Such compositions can be used in multilayer constructions in, for example, fuel hose applications.
    Type: Application
    Filed: August 13, 2015
    Publication date: August 10, 2017
    Inventors: Lisa P. Chen, Klaus Hintzer, Harald Kaspar, Kai H. Lochhaas, Mark W. Muggli, Jens Schrooten, Allen M. Sohlo, Helmut Traunspurger, Karl D. Weilandt, Tilman C. Zipplies
  • Publication number: 20170226337
    Abstract: Described herein is a composition comprising a fluorothermoplastic polymer, wherein the fluorothermoplastic polymer is derived from: (a) 60-85 mol % tetrafluoroethene; (b) 2-12 mol % hexafluoropropene; (c) 10-30 mol % vinylidene fluoride; (d) 0.2 to 5 mol % of a bromine-containing monomer. Such compositions can be used in multilayer constructions in, for example, fuel hose applications.
    Type: Application
    Filed: August 11, 2015
    Publication date: August 10, 2017
    Inventors: Lisa P. Chen, Klaus Hintzer, Harald Kaspar, Kai H. Lochhaas, Mark W. Muggli, Jens Schrooten, Allen M. Sohlo, Helmut Traunspurger, Karl D. Weilandt, Tilman C. Zipplies