Patents by Inventor Jeonghyun Hwang

Jeonghyun Hwang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240099496
    Abstract: Disclosed herein are a water supply device, and a steam supply device and a cooking appliance comprising the same. The water supply device comprises a slider being accommodated in a housing the front surface of which is open, in a way that the slider is movable in a front-rear direction, and a water tank being installed in the housing in a way that the water tank comes in and out of the housing in the front-rear direction and connecting to the slider to move forward together with the slider, and the slider is provided apart from the water tank.
    Type: Application
    Filed: September 19, 2023
    Publication date: March 28, 2024
    Inventors: Jangmo SHIN, Jeonghyun Lee, Hansaem Hwang, Janghoon Kim, Chan-Yong Yeo
  • Patent number: 11916119
    Abstract: Disclosed are embodiments of a transistor (e.g., a III-V high electron mobility transistor (HEMT), a III-V metal-insulator-semiconductor HEMT (MISHEMT), or the like) that has multiple self-aligned terminals. The self-aligned terminals include a self-aligned gate, a self-aligned source terminal and, optionally, a self-aligned drain terminal. By forming self-aligned terminals during processing, the separation distances between the terminals (e.g., between the gate and source terminal and, optionally, between the gate and drain terminal) can be reduced in order to reduce device size and to improve performance (e.g., to reduce on resistance and increase switching speeds). Also disclosed herein are method embodiments for forming such a transistor.
    Type: Grant
    Filed: November 3, 2021
    Date of Patent: February 27, 2024
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Zhong-Xiang He, Jeonghyun Hwang, Ramsey M. Hazbun, Brett T. Cucci, Ajay Raman, Johnatan A. Kantarovsky
  • Patent number: 11881506
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to gate structures and methods of manufacture. The structure includes: a gate structure comprising a horizontal portion and a substantially vertical stem portion; and an air gap surrounding the substantially vertical stem portion and having a curved surface under the horizontal portion.
    Type: Grant
    Filed: July 27, 2021
    Date of Patent: January 23, 2024
    Assignee: GLOBALFOUNDRIES U.S. INC.
    Inventors: Johnatan A. Kantarovsky, Mark D. Levy, Brett T. Cucci, Jeonghyun Hwang, Siva P. Adusumilli
  • Publication number: 20240006524
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to a patterned buried porous layer of semiconductor material and a device over the patterned buried porous layer, and methods of manufacture. The structure includes: a semiconductor substrate includes a patterned buried porous layer within the semiconductor substrate; a semiconductor compound material over the semiconductor substrate and the patterned buried porous layer; and at least one device on the semiconductor compound material. The non-patterned portions of the semiconductor substrate provide a thermal pathway within the semiconductor substrate.
    Type: Application
    Filed: June 29, 2022
    Publication date: January 4, 2024
    Inventors: Mark D. LEVY, Qizhi LIU, Jeonghyun HWANG
  • Patent number: 11710655
    Abstract: Embodiments of the disclosure provide an integrated circuit (IC) structure, including a semiconductor-based isolation structure on a substrate. A shallow trench isolation (STI) structure may be positioned on the semiconductor-based isolation structure. An active semiconductor region is on the substrate and adjacent each of the semiconductor-based isolation structure and the STI structure. The active semiconductor region includes a doped semiconductor material. At least one device on the active semiconductor region may be horizontally distal to the STI structure.
    Type: Grant
    Filed: October 20, 2021
    Date of Patent: July 25, 2023
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Anthony K. Stamper, Henry L. Aldridge, Jr., Johnatan A. Kantarovsky, Jeonghyun Hwang
  • Publication number: 20230207639
    Abstract: Disclosed are a transistor and a method for forming the transistor. The method includes concurrently forming gate and source/drain openings through an uppermost layer (i.e., a dielectric layer) in a stack of layers. The method can further include: depositing and patterning gate conductor material so that a first gate section is in the gate opening and a second gate section is above the gate opening and so that the source/drain openings are exposed; extending the depth of the source/drain openings; and depositing and patterning source/drain conductor material so that a first source/drain section is in each source/drain opening and a second source/drain section is above each source/drain opening. Alternatively, the method can include: forming a plug in the gate opening and sidewall spacers in the source/drain openings; extending the depth of source/drain openings; depositing and patterning the source/drain conductor material; and subsequently depositing and patterning the gate conductor material.
    Type: Application
    Filed: February 24, 2023
    Publication date: June 29, 2023
    Inventors: Johnatan A. Kantarovsky, Mark D. Levy, Jeonghyun Hwang, Siva P. Adusumilli, Ajay Raman
  • Patent number: 11646351
    Abstract: Disclosed are a transistor and a method for forming the transistor. The method includes concurrently forming gate and source/drain openings through an uppermost layer (i.e., a dielectric layer) in a stack of layers. The method can further include: depositing and patterning gate conductor material so that a first gate section is in the gate opening and a second gate section is above the gate opening and so that the source/drain openings are exposed; extending the depth of the source/drain openings; and depositing and patterning source/drain conductor material so that a first source/drain section is in each source/drain opening and a second source/drain section is above each source/drain opening. Alternatively, the method can include: forming a plug in the gate opening and sidewall spacers in the source/drain openings; extending the depth of source/drain openings; depositing and patterning the source/drain conductor material; and subsequently depositing and patterning the gate conductor material.
    Type: Grant
    Filed: January 12, 2021
    Date of Patent: May 9, 2023
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Johnatan A. Kantarovsky, Mark D. Levy, Jeonghyun Hwang, Siva P. Adusumilli, Ajay Raman
  • Publication number: 20230139011
    Abstract: Disclosed are embodiments of a transistor (e.g., a III-V high electron mobility transistor (HEMT), a III-V metal-insulator-semiconductor HEMT (MISHEMT), or the like) that has multiple self-aligned terminals. The self-aligned terminals include a self-aligned gate, a self-aligned source terminal and, optionally, a self-aligned drain terminal. By forming self-aligned terminals during processing, the separation distances between the terminals (e.g., between the gate and source terminal and, optionally, between the gate and drain terminal) can be reduced in order to reduce device size and to improve performance (e.g., to reduce on resistance and increase switching speeds). Also disclosed herein are method embodiments for forming such a transistor.
    Type: Application
    Filed: November 3, 2021
    Publication date: May 4, 2023
    Applicant: GlobalFoundries U.S. Inc.
    Inventors: Zhong-Xiang He, Jeonghyun Hwang, Ramsey M. Hazbun, Brett T. Cucci, Ajay Raman, Johnatan A. Kantarovsky
  • Publication number: 20230121393
    Abstract: Structures including devices, such as transistors, integrated on a semiconductor substrate and methods of forming a structure including devices, such as transistors, integrated on a semiconductor substrate. A first transistor is formed in a first device region of a semiconductor substrate, and a second transistor is formed in a second device region of the semiconductor substrate. The second transistor includes a layer stack on the semiconductor substrate, and the layer stack includes a layer comprised of a III-V compound semiconductor material. A polycrystalline layer includes a section that is positioned in the semiconductor substrate beneath the first device region.
    Type: Application
    Filed: December 21, 2022
    Publication date: April 20, 2023
    Inventors: Siva P. Adusumilli, Mark Levy, Jeonghyun Hwang
  • Patent number: 11616127
    Abstract: The present disclosure relates generally to structures in semiconductor devices and methods of forming the same. More particularly, the present disclosure relates to semiconductor devices having field plates that are arranged symmetrically around a gate. The present disclosure provides a semiconductor device including an active region above a substrate, source and drain electrodes in contact with the active region, a gate above the active region and laterally between the source and drain electrodes, a first field plate between the source electrode and the gate, a second field plate between the drain electrode and the gate, in which the gate is spaced apart laterally and substantially equidistant from the first field plate and the second field plate.
    Type: Grant
    Filed: February 13, 2022
    Date of Patent: March 28, 2023
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Johnatan Avraham Kantarovsky, Rajendran Krishnasamy, Siva P. Adusumilli, Steven Bentley, Michael Joseph Zierak, Jeonghyun Hwang
  • Publication number: 20230037420
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to gate structures and methods of manufacture. The structure includes: a gate structure comprising a horizontal portion and a substantially vertical stem portion; and an air gap surrounding the substantially vertical stem portion and having a curved surface under the horizontal portion.
    Type: Application
    Filed: July 27, 2021
    Publication date: February 9, 2023
    Inventors: Johnatan A. Kantarovsky, Mark D. Levy, Brett T. Cucci, Jeonghyun Hwang, Siva P. Adusumilli
  • Publication number: 20230034728
    Abstract: Disclosed is an integrated circuit (IC) structure that includes a through-metal through-substrate interconnect. The interconnect extends essentially vertically through a device level metallic feature on a frontside of a substrate, extends downward from the device level metallic feature into or completely through the substrate (e.g., to contact a backside metallic feature below), and extends upward from the device level metallic feature through interlayer dielectric (ILD) material (e.g., to contact a BEOL metallic feature above). The device level metallic feature can be, for example, a metallic source/drain region of a transistor, such as a high electron mobility transistor (HEMT) or a metal-insulator-semiconductor high electron mobility transistor (MISHEMT), which is formed on the frontside of the substrate. The backside metallic feature can be a grounded metal layer. The BEOL metallic feature can be a metal wire in one of the BEOL metal levels. Also disclosed is an associated method.
    Type: Application
    Filed: July 30, 2021
    Publication date: February 2, 2023
    Applicant: GLOBALFOUNDRIES U.S. Inc.
    Inventors: Zhong-Xiang He, Richard J. Rassel, Alvin J. Joseph, Ramsey M. Hazbun, Jeonghyun Hwang, Mark D. Levy
  • Patent number: 11569374
    Abstract: Structures including devices, such as transistors, integrated on a semiconductor substrate and methods of forming a structure including devices, such as transistors, integrated on a semiconductor substrate. A first transistor is formed in a first device region of a semiconductor substrate, and a second transistor is formed in a second device region of the semiconductor substrate. The second transistor includes a layer stack on the semiconductor substrate, and the layer stack includes a layer comprised of a III-V compound semiconductor material. A polycrystalline layer includes a section that is positioned in the semiconductor substrate beneath the first device region.
    Type: Grant
    Filed: December 2, 2020
    Date of Patent: January 31, 2023
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Siva P. Adusumilli, Mark Levy, Jeonghyun Hwang
  • Publication number: 20220392888
    Abstract: Structures including devices, such as transistors, integrated on a bulk semiconductor substrate and methods of forming a structure including devices, such as transistors, integrated on a bulk semiconductor substrate. The bulk semiconductor substrate contains a single-crystal semiconductor material having a diamond crystal lattice structure and a <111> crystal orientation. A first transistor is formed in a first device region of the bulk semiconductor substrate, and a second transistor is formed in a second device region of the bulk semiconductor substrate. The second transistor includes a layer stack on the bulk semiconductor substrate, and the layer stack includes a layer comprised of a III-V compound semiconductor material.
    Type: Application
    Filed: August 18, 2022
    Publication date: December 8, 2022
    Inventors: Mark Levy, Jeonghyun Hwang, Siva P. Adusumilli
  • Patent number: 11469225
    Abstract: Structures including devices, such as transistors, integrated on a bulk semiconductor substrate and methods of forming a structure including devices, such as transistors, integrated on a bulk semiconductor substrate. The bulk semiconductor substrate contains a single-crystal semiconductor material having a diamond crystal lattice structure and a <111> crystal orientation. A first transistor is formed in a first device region of the bulk semiconductor substrate, and a second transistor is formed in a second device region of the bulk semiconductor substrate. The second transistor includes a layer stack on the bulk semiconductor substrate, and the layer stack includes a layer comprised of a III-V compound semiconductor material.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: October 11, 2022
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Mark Levy, Jeonghyun Hwang, Siva P. Adusumilli
  • Publication number: 20220223694
    Abstract: Disclosed are a transistor and a method for forming the transistor. The method includes concurrently forming gate and source/drain openings through an uppermost layer (i.e., a dielectric layer) in a stack of layers. The method can further include: depositing and patterning gate conductor material so that a first gate section is in the gate opening and a second gate section is above the gate opening and so that the source/drain openings are exposed; extending the depth of the source/drain openings; and depositing and patterning source/drain conductor material so that a first source/drain section is in each source/drain opening and a second source/drain section is above each source/drain opening. Alternatively, the method can include: forming a plug in the gate opening and sidewall spacers in the source/drain openings; extending the depth of source/drain openings; depositing and patterning the source/drain conductor material; and subsequently depositing and patterning the gate conductor material.
    Type: Application
    Filed: January 12, 2021
    Publication date: July 14, 2022
    Applicant: GLOBALFOUNDRIES U.S. Inc.
    Inventors: Johnatan A. Kantarovsky, Mark D. Levy, Jeonghyun Hwang, Siva P. Adusumilli, Ajay Raman
  • Publication number: 20220173233
    Abstract: Structures including devices, such as transistors, integrated on a semiconductor substrate and methods of forming a structure including devices, such as transistors, integrated on a semiconductor substrate. A first transistor is formed in a first device region of a semiconductor substrate, and a second transistor is formed in a second device region of the semiconductor substrate. The second transistor includes a layer stack on the semiconductor substrate, and the layer stack includes a layer comprised of a III-V compound semiconductor material. A polycrystalline layer includes a section that is positioned in the semiconductor substrate beneath the first device region.
    Type: Application
    Filed: December 2, 2020
    Publication date: June 2, 2022
    Inventors: Siva P. Adusumilli, Mark Levy, Jeonghyun Hwang
  • Publication number: 20220165853
    Abstract: The present disclosure relates generally to structures in semiconductor devices and methods of forming the same. More particularly, the present disclosure relates to semiconductor devices having field plates that are arranged symmetrically around a gate. The present disclosure provides a semiconductor device including an active region above a substrate, source and drain electrodes in contact with the active region, a gate above the active region and laterally between the source and drain electrodes, a first field plate between the source electrode and the gate, a second field plate between the drain electrode and the gate, in which the gate is spaced apart laterally and substantially equidistant from the first field plate and the second field plate.
    Type: Application
    Filed: February 13, 2022
    Publication date: May 26, 2022
    Inventors: JOHNATAN AVRAHAM KANTAROVSKY, RAJENDRAN KRISHNASAMY, SIVA P. ADUSUMILLI, STEVEN BENTLEY, MICHAEL JOSEPH ZIERAK, JEONGHYUN HWANG
  • Patent number: 11316019
    Abstract: The present disclosure relates generally to structures in semiconductor devices and methods of forming the same. More particularly, the present disclosure relates to semiconductor devices having field plates that are arranged symmetrically around a gate. The present disclosure provides a semiconductor device including an active region above a substrate, source and drain electrodes in contact with the active region, a gate above the active region and laterally between the source and drain electrodes, a first field plate between the source electrode and the gate, a second field plate between the drain electrode and the gate, in which the gate is spaced apart laterally and substantially equidistant from the first field plate and the second field plate.
    Type: Grant
    Filed: July 29, 2020
    Date of Patent: April 26, 2022
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Johnatan Avraham Kantarovsky, Rajendran Krishnasamy, Siva P. Adusumilli, Steven Bentley, Michael Joseph Zierak, Jeonghyun Hwang
  • Publication number: 20220122963
    Abstract: Structures including devices, such as transistors, integrated on a bulk semiconductor substrate and methods of forming a structure including devices, such as transistors, integrated on a bulk semiconductor substrate. The bulk semiconductor substrate contains a single-crystal semiconductor material having a diamond crystal lattice structure and a <111> crystal orientation. A first transistor is formed in a first device region of the bulk semiconductor substrate, and a second transistor is formed in a second device region of the bulk semiconductor substrate. The second transistor includes a layer stack on the bulk semiconductor substrate, and the layer stack includes a layer comprised of a III-V compound semiconductor material.
    Type: Application
    Filed: October 16, 2020
    Publication date: April 21, 2022
    Inventors: Mark Levy, Jeonghyun Hwang, Siva P. Adusumilli