Patents by Inventor Jeramy Zimmerman

Jeramy Zimmerman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200188691
    Abstract: A novel treatment method is disclosed, wherein a patch configured to be placed on a patient's skin is activated, before placement, to deliver localized radiotherapy to a diseased area of the skin. The disclosed devices and methods minimize or prevent collateral damage to the neighboring tissues. In most cases, the disclosed devices and methods include coating a contoured, solid, flexible or conformal substrate with one or more lanthanide elements and then activating (e.g. neutron irradiation) the elements such that its resulting radioisotope emits beta-particles into the diseased skin surface when applied to the patient's skin. Novel processes are described for fabricating and irradiating the lanthanide-based skin patch, for example a holmium-based skin patch.
    Type: Application
    Filed: October 18, 2019
    Publication date: June 18, 2020
    Inventors: Frédéric Sarazin, Jeramy Zimmerman, Rachel Morneau, Martin Ritter
  • Patent number: 10069033
    Abstract: There is disclosed a method of preparing a photovoltaic device. In particular, the method comprises integrating epitaxial lift-off solar cells with mini-parabolic concentrator arrays via a printing method. Thus, there is disclosed a method comprising providing a growth substrate; depositing at least one protection layer on the growth substrate; depositing at least one sacrificial layer on the protection layer; depositing at least one photoactive cell on the sacrificial layer; etching a pattern of at least two parallel trenches that extend from the at least one photoactive cell to the sacrificial layer; depositing a metal on the at least one photoactive cell; bonding said metal to a host substrate; and removing the sacrificial layer with one or more etch steps. The host substrate can be a siloxane, which when rolled, can form a stamp used to integrate solar cells into concentrator arrays. There are also disclosed a method of making a growth substrate and the growth substrate made therefrom.
    Type: Grant
    Filed: January 15, 2015
    Date of Patent: September 4, 2018
    Assignee: The Regents of the University of Michigan
    Inventors: Stephen R. Forrest, Kyusang Lee, Dejiu Fan, Jeramy Zimmerman
  • Patent number: 9548218
    Abstract: There is disclosed a method of preserving the integrity of a growth substrate in a epitaxial lift-off method, the method comprising providing a structure comprising a growth substrate, one or more protective layers, a sacrificial layer, and at least one epilayer, wherein the sacrificial layer and the one or more protective layers are positioned between the growth substrate and the at least one epilayer; releasing the at least one epilayer by etching the sacrificial layer with an etchant; and heat treating the growth substrate and/or at least one of the protective layers.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: January 17, 2017
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Kyusang Lee, Jeramy Zimmerman, Stephen R. Forrest
  • Publication number: 20160329457
    Abstract: There is disclosed a method of preparing a photovoltaic device. In particular, the method comprises integrating epitaxial lift-off solar cells with mini-parabolic concentrator arrays via a printing method. Thus, there is disclosed a method comprising providing a growth substrate; depositing at least one protection layer on the growth substrate; depositing at least one sacrificial layer on the protection layer; depositing at least one photoactive cell on the sacrificial layer; etching a pattern of at least two parallel trenches that extend from the at least one photoactive cell to the sacrificial layer; depositing a metal on the at least one photoactive cell; bonding said metal to a host substrate; and removing the sacrificial layer with one or more etch steps. The host substrate can be a siloxane, which when rolled, can form a stamp used to integrate solar cells into concentrator arrays. There are also disclosed a method of making a growth substrate and the growth substrate made therefrom.
    Type: Application
    Filed: January 15, 2015
    Publication date: November 10, 2016
    Applicant: The Regents of the University of Michigan
    Inventors: Stephen R. Forrest, Kyusang Lee, Dejiu Fan, Jeramy Zimmerman
  • Publication number: 20160254470
    Abstract: A high efficiency small molecule tandem solar cell is disclosed. The tandem cell may include a first subcell comprising a first photoactive region and a second subcell comprising a second photoactive region. The first and second photoactive regions are designed to minimize spectral overlap and maximize photocurrent. The device may further include an interconnecting layer, disposed between the first subcell and the second subcell, that is at least substantially transparent.
    Type: Application
    Filed: October 27, 2014
    Publication date: September 1, 2016
    Inventors: Stephen R. Forrest, Xiaozhou Che, Xin Xiao, Jeramy Zimmerman
  • Publication number: 20150170970
    Abstract: There is disclosed a thin film device for epitaxial lift off comprising a handle and one or more straining layers disposed on the handle, wherein the one or more straining layers induce a curvature of the handle. There is also disclosed a method of fabricating a thin film device for epitaxial lift off comprising, depositing one or more straining layers on a handle, wherein the one or more straining layers induce at least one strain on the handle chosen from tensile strain, compressive strain and near-neutral strain. There is also disclosed a method for epitaxial lift off comprising, depositing an epilayer over a sacrificial layer disposed on a growth substrate; depositing one or more straining layers on at least one of the growth substrate and a handle; bonding the handle to the growth substrate; and etching the sacrificial layer.
    Type: Application
    Filed: June 4, 2013
    Publication date: June 18, 2015
    Inventors: Stephen R. Forrest, Kyusang Lee, Jeramy Zimmerman
  • Patent number: 9029837
    Abstract: Coordinating additives are included in porphyrinoid-based materials to promote intermolecular organization and improve one or more photoelectric characteristics of the materials. The coordinating additives are selected from fullerene compounds and organic compounds having free electron pairs. Combinations of different coordinating additives can be used to tailor the characteristic properties of such porphyrinoid-based materials, including porphyrin oligomers. Bidentate ligands are one type of coordinating additive that can form coordination bonds with a central metal ion of two different porphyrinoid compounds to promote porphyrinoid alignment and/or pi-stacking. The coordinating additives can shift the absorption spectrum of a photoactive material toward higher wavelengths, increase the external quantum efficiency of the material, or both.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: May 12, 2015
    Assignee: The Regents of The University of Michigan
    Inventors: Stephen R. Forrest, Jeramy Zimmerman, Eric K. Yu, Mark E. Thompson, Cong Trinh, Matthew Whited, Vlacheslav Diev
  • Publication number: 20150048314
    Abstract: Coordinating additives are included in porphyrinoid-based materials to promote intermolecular organization and improve one or more photoelectric characteristics of the materials. The coordinating additives are selected from fullerene compounds and organic compounds having free electron pairs. Combinations of different coordinating additives can be used to tailor the characteristic properties of such porphyrinoid-based materials, including porphyrin oligomers. Bidentate ligands are one type of coordinating additive that can form coordination bonds with a central metal ion of two different porphyrinoid compounds to promote porphyrinoid alignment and/or pi-stacking. The coordinating additives can shift the absorption spectrum of a photoactive material toward higher wavelengths, increase the external quantum efficiency of the material, or both.
    Type: Application
    Filed: October 12, 2011
    Publication date: February 19, 2015
    Applicant: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Stephen R. Forrest, Jeramy Zimmerman, Eric K. Yu, Mark E. Thompson, Cong Trinh, Matthew Whited, Viacheslav Diev
  • Patent number: 8927319
    Abstract: There is disclosed methods of making photosensitive devices, such as flexible photovoltaic (PV) devices, through the use of epitaxial liftoff. Also described herein are methods of preparing flexible PV devices comprising a structure having a growth substrate, wherein the selective etching of protective layers yields a smooth growth substrate that us suitable for reuse.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: January 6, 2015
    Assignee: The Regents of the University of Michigan
    Inventors: Stephen R. Forrest, Jeramy Zimmerman, Kyusang Lee, Kuen-Ting Shiu
  • Publication number: 20140370716
    Abstract: There is disclosed a method of preserving the integrity of a growth substrate in a epitaxial lift-off method, the method comprising providing a structure comprising a growth substrate, one or more protective layers, a sacrificial layer, and at least one epilayer, wherein the sacrificial layer and the one or more protective layers are positioned between the growth substrate and the at least one epilayer; releasing the at least one epilayer by etching the sacrificial layer with an etchant; and heat treating the growth substrate and/or at least one of the protective layers.
    Type: Application
    Filed: February 7, 2013
    Publication date: December 18, 2014
    Inventors: Kyusang Lee, Jeramy Zimmerman, Stephen R. Forrest
  • Publication number: 20130043214
    Abstract: There is disclosed a growth structure comprising a growth substrate, a sacrificial layer, a buffer layer, at least three substrate protective layers, at least one epilayer, at least one contact, and a metal or alloy-coated host substrate. In one embodiment, the device further comprises at least three device structure protecting layers. The sacrificial layer may be positioned between the growth substrate and the at least one epilayer, wherein the at least three substrate protective layers are positioned between the growth substrate and the sacrificial layer, and the at least three device structure protecting layers are positioned between the sacrificial layer and the epilayer. There is also disclosed a method of preserving the integrity of a growth substrate by releasing the cell structure by etching the sacrificial layer and the protective layers.
    Type: Application
    Filed: June 28, 2012
    Publication date: February 21, 2013
    Inventors: Stephen R. Forrest, Jeramy Zimmerman, Kyusang Lee
  • Patent number: 8378385
    Abstract: There is disclosed methods of making photosensitive devices, such as flexible photovoltaic (PV) devices, through the use of epitaxial liftoff. Also described herein are methods of preparing flexible PV devices comprising a structure having a growth substrate, wherein the selective etching of protective layers yields a smooth growth substrate that us suitable for reuse.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: February 19, 2013
    Assignee: The Regents of the University of Michigan
    Inventors: Stephen R. Forrest, Jeramy Zimmerman, Kyusang Lee, Kuen-Ting Shiu
  • Publication number: 20110186910
    Abstract: There is disclosed methods of making photosensitive devices, such as flexible photovoltaic (PV) devices, through the use of epitaxial liftoff. Also described herein are methods of preparing flexible PV devices comprising a structure having a growth substrate, wherein the selective etching of protective layers yields a smooth growth substrate that us suitable for reuse.
    Type: Application
    Filed: September 9, 2010
    Publication date: August 4, 2011
    Inventors: Stephen R. Forrest, Jeramy Zimmerman, Kyusang Lee, Kuen-Ting Shiu
  • Publication number: 20070227588
    Abstract: A method and device that incorporates metallic nanoparticles at the p+-n+ tunnel junction in a cascaded photovoltaic solar cell. The use of the nanoparticles enhances the tunneling current density through the tunnel junction. As such, the efficiency of the solar cell is increased. A method in accordance with the present invention comprises making a first solar cell having a first bandgap, making a tunnel junction coupled to the first solar cell, and making a second solar cell having a second bandgap, coupled to the tunnel junction opposite the first solar cell, wherein the tunnel junction comprises nanoparticles. Such a method further optionally includes the nanoparticles being a metal or a semi metal, specifically a semi-metal of erbium arsenide, the nanoparticles being deposited in an island structure within the tunnel junction, and the first solar cell being deposited on a flexible substrate.
    Type: Application
    Filed: February 15, 2007
    Publication date: October 4, 2007
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Arthur Gossard, Joshua Zide, Jeramy Zimmerman