Patents by Inventor Jeremy Burdon

Jeremy Burdon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070236861
    Abstract: A hermetic interconnect for implantable medical devices is presented. In one embodiment, the hermetic interconnect includes a conductive material introduced to a via in a single layer. The conductive material includes a first end and a second end. A first bonding pad is coupled to the first end of the conductive material. A second bonding pad is coupled to the second end of the conductive material. The single layer and the conductive material undergo a co-firing process.
    Type: Application
    Filed: April 5, 2006
    Publication date: October 11, 2007
    Inventors: Jeremy Burdon, Joyce Yamamoto, Lea Nygren, William Wolf
  • Publication number: 20070060969
    Abstract: The invention includes a family of miniaturized, hermetic electrical feedthrough assemblies adapted for implantation within a biological system. An electrical feedthrough assembly according to the invention can be used as a component of an implantable medical device such as an implantable pulse generator, cardioverter-defibrillator, physiologic sensor, drug-delivery system and the like. Such assemblies require biocompatibility and resistance to degradation under applied bias current or voltage. Such an assembly is fabricated by interconnected electrical pathways, or vias, of a conductive metallic paste disposed between ceramic green-state material. The layers are stacked together and sintered to form a substantially monolithic dielectric structure with at least one embedded metallization pathway extending through the structure. The metallization pathway reliably conducts electrical signals even when exposed to body fluids and tissue and providing reliable electrical communication.
    Type: Application
    Filed: September 15, 2005
    Publication date: March 15, 2007
    Inventors: Jeremy Burdon, Joyce Yamamoto, Lea Nygren, William Wolf
  • Publication number: 20070060970
    Abstract: The invention includes a family of miniaturized, hermetic electrical feedthrough assemblies adapted for implantation within a biological system. An electrical feedthrough assembly according to the invention can be used as a component of an implantable medical device (IMD) such as an implantable pulse generator, cardioverter-defibrillator, physiologic sensor, drug-delivery system and the like. Such assemblies require biocompatibility and resistance to degradation under applied bias current or voltage. Such an assembly is fabricated by interconnected electrical pathways, or vias, of a conductive metallic paste disposed between ceramic green-state material. The layers are stacked together and sintered to form a substantially monolithic dielectric structure with at least one embedded metallization pathway extending through the structure.
    Type: Application
    Filed: September 15, 2005
    Publication date: March 15, 2007
    Inventors: Jeremy Burdon, Joyce Yamamoto
  • Publication number: 20060257285
    Abstract: An apparatus is provided for detecting an atmospheric component. The apparatus comprises one or more arrays, wherein each array comprises one or more colorimetric reagents. A material encapsulating the colorimetric reagents of each array is capable of being at least partially removed to expose the colorimetric reagents of a selected array to the atmosphere. An imager detects colors of the one or more colorimetric reagents in the selected array. Circuitry then determines changes in colors of the one or more colorimetric reagents within the selected array.
    Type: Application
    Filed: October 14, 2004
    Publication date: November 16, 2006
    Inventors: Jeremy Burdon, Manuel Oliver, Peter Roberts
  • Publication number: 20060247539
    Abstract: Embodiments of the invention provide systems and methods for an implantable capacitive pressure sensor. Some embodiments of the invention include a capacitive pressure sensor capsule comprising a substrate, a conductive plate functionally coupled to the substrate, a conductive diaphragm spaced from the conductive plate and functionally coupled to the substrate, a lid hermetically sealed against the substrate, and pressure sensing circuitry disposed within a volume generally defined by the lid and the substrate. Embodiments of the invention also include a lead provided with an implantable pressure sensor capsule and a method of manufacturing a capacitive pressure sensor capsule.
    Type: Application
    Filed: April 28, 2005
    Publication date: November 2, 2006
    Inventors: Michael Schugt, Keith Miesel, Jeremy Burdon, Eric Bonde
  • Patent number: 6605454
    Abstract: A microwave device has a monolithic microwave integrated circuit (MMIC) disposed therein for applying microwave radiation to a microfluidic structure, such as a chamber, defined in the device. The microwave radiation from the MMIC is useful for heating samples introduced into the microfluidic structure and for effecting lysis of cells in the samples. Microfabrication techniques allow the fabrication of MMICs that perform heating and cell lysing of samples having volumes in the microliter to picoliter range.
    Type: Grant
    Filed: March 22, 2001
    Date of Patent: August 12, 2003
    Assignee: Motorola, Inc.
    Inventors: Barbara Foley Barenburg, Jeremy Burdon, Yuk-Tong Chan, Xunhu Dai, Sean Gallagher, Piotr Grodzinski, Robert Marrero, Vijay Nair, David Rhine, Thomas Smekal
  • Publication number: 20020115201
    Abstract: A microwave device has a monolithic microwave integrated circuit (MMIC) disposed therein for applying microwave radiation to a microfluidic structure, such as a chamber, defined in the device. The microwave radiation from the MMIC is useful for heating samples introduced into the microfluidic structure and for effecting lysis of cells in the samples. Microfabrication techniques allow the fabrication of MMICs that perform heating and cell lysing of samples having volumes in the microliter to picoliter range.
    Type: Application
    Filed: March 22, 2001
    Publication date: August 22, 2002
    Inventors: Barbara Foley Barenburg, Jeremy Burdon, Yuk-Tong Chan, Xunhu Dai, Sean Gallagher, Piotr Grodzinski, Robert Marrero, Vijay Nair, David Rhine, Thomas Smekal