Patents by Inventor Jeremy Lackey

Jeremy Lackey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220305487
    Abstract: Methods of preparing surfaces of sample wells are provided. In some aspects, methods of preparing a sample well surface involve contacting the sample well with a block copolymer to form an antifouling overlay over a metal oxide surface of the sample well. In some aspects, methods of passivating and/or selectively functionalizing a sample well surface are provided.
    Type: Application
    Filed: December 8, 2021
    Publication date: September 29, 2022
    Applicant: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Jeremy Lackey, Guojun Chen
  • Patent number: 11428635
    Abstract: Apparatus and methods for analyzing single molecule and performing nucleic acid sequencing. An integrated device includes multiple pixels with sample wells configured to receive a sample, which, when excited, emits radiation; at least one element for directing the emission radiation in a particular direction; and a light path along which the emission radiation travels from the sample well toward a sensor. The apparatus also includes an instrument that interfaces with the integrated device. Each sensor may detect emission radiation from a sample in a respective sample well. The instrument includes an excitation light source for exciting the sample in each sample well.
    Type: Grant
    Filed: July 5, 2018
    Date of Patent: August 30, 2022
    Assignee: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Ali Kabiri, Jason W. Sickler, Brett J. Gyarfas, Jeremy Lackey, Gerard Schmid, Benjamin Cipriany, Jack Jewell, Lawrence C. West, Michael Ferrigno, Paul E. Glenn, Anthony Bellofiore
  • Patent number: 11422092
    Abstract: System and methods for analyzing single molecules and performing nucleic acid sequencing. An integrated device may include multiple pixels with sample wells configured to receive a sample, which when excited, emits radiation. The integrated device includes a surface having a trench region recessed from a portion of the surface and an array of sample wells, disposed in the trench region. The integrated device also includes a waveguide configured to couple excitation energy to at least one sample well in the array and positioned at a first distance from a surface of the trench region and at a second distance from the surface in a region separate from the trench region. The first distance is smaller than the second distance. The system also includes an instrument that interfaces with the integrated device. The instrument may include an excitation energy source for providing excitation energy to the integrated device by coupling to an excitation energy coupling region of the integrated device.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: August 23, 2022
    Assignee: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Ali Kabiri, Gerard Schmid, Keith G. Fife, James Beach, Jason W. Sickler, Lawrence C. West, Paul E. Glenn, Kyle Preston, Farshid Ghasemi, Benjamin Cipriany, Jeremy Lackey
  • Publication number: 20220214279
    Abstract: Apparatus and methods for analyzing single molecule and performing nucleic acid sequencing. An apparatus can include an assay chip that includes multiple pixels with sample wells configured to receive a sample, which, when excited, emits emission energy; at least one element for directing the emission energy in a particular direction; and a light path along which the emission energy travels from the sample well toward a sensor. The apparatus also includes an instrument that interfaces with the assay chip. The instrument includes an excitation light source for exciting the sample in each sample well; a plurality of sensors corresponding the sample wells. Each sensor may detect emission energy from a sample in a respective sample well. The instrument includes at least one optical element that directs the emission energy from each sample well towards a respective sensor of the plurality of sensors.
    Type: Application
    Filed: March 25, 2022
    Publication date: July 7, 2022
    Applicant: Quantum-Si Incorporated
    Inventors: JONATHAN M. ROTHBERG, Ali Kabiri, Jason W. Sickler, Brett J. Gyarfas, Jeremy Lackey, Gerard Schmid, Benjamin Ciperiany, Jack Jewell, Lawrence C. West, Michael Ferrigno, Paul E. Glenn, Adam Ezra Cohen, Anthony Bellofiore
  • Publication number: 20220170861
    Abstract: Apparatus and methods for analyzing single molecule and performing nucleic acid sequencing. An apparatus can include an assay chip that includes multiple pixels with sample wells configured to receive a sample, which, when excited, emits emission energy; at least one element for directing the emission energy in a particular direction; and a light path along which the emission energy travels from the sample well toward a sensor. The apparatus also includes an instrument that interfaces with the assay chip. The instrument includes an excitation light source for exciting the sample in each sample well; a plurality of sensors corresponding the sample wells. Each sensor may detect emission energy from a sample in a respective sample well. The instrument includes at least one optical element that directs the emission energy from each sample well towards a respective sensor of the plurality of sensors.
    Type: Application
    Filed: February 18, 2022
    Publication date: June 2, 2022
    Applicant: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Ali Kabiri, Jason W. Sickler, Brett J. Gyarfas, Jeremy Lackey, Gerard Schmid, Benjamin Cipriany, Jack Jewell, Lawrence C. West, Michael Ferrigno, Paul E. Glenn, Adam Ezra Cohen, Anthony Bellofiore
  • Publication number: 20220145289
    Abstract: Disclosed herein are methods and compositions comprising a polymerase and a phosphorylated nucleoside, wherein the polymerase and the nucleoside are covalently linked by a cleavable linker at the terminal phosphate group. Further disclosed herein are enzymatic polynucleotide synthesis using polymerase and nucleotide conjugation strategies.
    Type: Application
    Filed: October 18, 2021
    Publication date: May 12, 2022
    Inventors: Jeremy LACKEY, David DODD
  • Patent number: 11312944
    Abstract: Compositions comprising modified recombinant polymerizing enzymes are provided, along with nucleic acid molecules encoding the modified polymerizing enzymes. In some aspects, methods of using such polymerizing enzymes to synthesize a nucleic acid molecule or to sequence a nucleic acid template are provided.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: April 26, 2022
    Assignee: Quantum-Si Incorporated
    Inventors: Brian Reed, Mohammad Wadud Bhuiya, Manjula Pandey, Jeremy Lackey, Jonathan M. Rothberg, Thomas Christian
  • Publication number: 20220120685
    Abstract: Apparatus and methods for analyzing single molecule and performing nucleic acid sequencing. An apparatus can include an assay chip that includes multiple pixels with sample wells configured to receive a sample, which, when excited, emits emission energy; at least one element for directing the emission energy in a particular direction; and a light path along which the emission energy travels from the sample well toward a sensor. The apparatus also includes an instrument that interfaces with the assay chip. The instrument includes an excitation light source for exciting the sample in each sample well; a plurality of sensors corresponding the sample wells. Each sensor may detect emission energy from a sample in a respective sample well. The instrument includes at least one optical element that directs the emission energy from each sample well towards a respective sensor of the plurality of sensors.
    Type: Application
    Filed: October 8, 2021
    Publication date: April 21, 2022
    Applicant: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Ali Kabiri, Jason W. Sickler, Brett J. Gyarfas, Jeremy Lackey, Gerard Schmid, Paul E. Glenn, Lawrence C. West, Benjamin Cipriany, Keith G. Fife
  • Publication number: 20220113469
    Abstract: An integrated device and related instruments and systems for analyzing samples in parallel are described. The integrated device may include sample wells arranged on a surface of where individual sample wells are configured to receive a sample labeled with at least one fluorescent marker configured to emit emission light in response to excitation light. The integrated device may further include photodetectors positioned in a layer of the integrated device, where one or more photodetectors are positioned to receive a photon of emission light emitted from a sample well. The integrated device further includes one or more photonic structures positioned between the sample wells and the photodetectors, where the one or more photonic structures are configured to attenuate the excitation light relative to the emission light such that a signal generated by the one or more photodetectors indicates detection of photons of emission light.
    Type: Application
    Filed: December 17, 2021
    Publication date: April 14, 2022
    Applicant: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Gerard Schmid, Alexander Gondarenko, James Beach, Kyle Preston, Farshid Ghasemi, Jeremy Lackey, Jack Jewell, Keith G. Fife, Ali Kabiri
  • Publication number: 20220099575
    Abstract: System and methods for analyzing single molecules and performing nucleic acid sequencing. An integrated device includes multiple pixels with sample wells configured to receive a sample, which when excited, emits radiation. The integrated device includes at least one waveguide configured to propagate excitation energy to the sample wells from a region of the integrated device configured to couple with an excitation energy source. A pixel may also include at least one element for directing the emission energy towards a sensor within the pixel. The system also includes an instrument that interfaces with the integrated device. The instrument may include an excitation energy source for providing excitation energy to the integrated device by coupling to an excitation energy coupling region of the integrated device.
    Type: Application
    Filed: October 8, 2021
    Publication date: March 31, 2022
    Applicant: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Ali Kabiri, Jason W. Sickler, Brett J. Gyarfas, Jeremy Lackey, Gerard Schmid, Lawrence C. West, Keith G. Fife, Benjamin Cipriany, Farshid Ghasemi
  • Patent number: 11287382
    Abstract: Apparatus and methods for analyzing single molecule and performing nucleic acid sequencing. An apparatus can include an assay chip that includes multiple pixels with sample wells configured to receive a sample, which, when excited, emits emission energy; at least one element for directing the emission energy in a particular direction; and a light path along which the emission energy travels from the sample well toward a sensor. The apparatus also includes an instrument that interfaces with the assay chip. The instrument includes an excitation light source for exciting the sample in each sample well; a plurality of sensors corresponding the sample wells. Each sensor may detect emission energy from a sample in a respective sample well. The instrument includes at least one optical element that directs the emission energy from each sample well towards a respective sensor of the plurality of sensors.
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: March 29, 2022
    Assignee: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Ali Kabiri, Jason W. Sickler, Brett J. Gyarfas, Jeremy Lackey, Gerard Schmid, Benjamin Cipriany, Jack Jewell, Lawrence C. West, Michael Ferrigno, Paul E. Glenn, Adam Ezra Cohen, Anthony Bellofiore
  • Publication number: 20220073973
    Abstract: Methods of sequencing molecules based on luminescence lifetimes and/or intensities are provided. In some aspects, methods of sequencing nucleic acids involve determining the luminescence lifetimes, and optionally luminescence intensities, of a series of luminescently labeled nucleotides incorporated during a nucleic acid sequencing reaction.
    Type: Application
    Filed: May 7, 2021
    Publication date: March 10, 2022
    Applicant: Quantum-Si incorporated
    Inventors: Jonathan M. Rothberg, Jeremy Lackey, Brian Reed, Xinghua Shi, Haidong Huang
  • Publication number: 20220032256
    Abstract: Provided herein are compositions, devices, systems and methods for generation and use of biomolecule-based information for storage. Further provided are devices comprising addressable LED arrays to control polynucleotide synthesis (deprotection, extension, or cleavage, etc.) The compositions, devices, systems and methods described herein provide improved storage, density, and retrieval of biomolecule-based information.
    Type: Application
    Filed: July 6, 2021
    Publication date: February 3, 2022
    Inventors: Jeremy LACKEY, Scott INDERMUEHLE, David DODD, Stefan PITSCH
  • Patent number: 11237326
    Abstract: An integrated device and related instruments and systems for analyzing samples in parallel are described. The integrated device may include sample wells arranged on a surface of where individual sample wells are configured to receive a sample labeled with at least one fluorescent marker configured to emit emission light in response to excitation light. The integrated device may further include photodetectors positioned in a layer of the integrated device, where one or more photodetectors are positioned to receive a photon of emission light emitted from a sample well. The integrated device further includes one or more photonic structures positioned between the sample wells and the photodetectors, where the one or more photonic structures are configured to attenuate the excitation light relative to the emission light such that a signal generated by the one or more photodetectors indicates detection of photons of emission light.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: February 1, 2022
    Assignee: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Gerard Schmid, Alexander Gondarenko, James Beach, Kyle Preston, Farshid Ghasemi, Jeremy Lackey, Jack Jewell, Keith G. Fife, Ali Kabiri
  • Patent number: 11224878
    Abstract: Methods of preparing surfaces of sample wells are provided. In some aspects, methods of preparing a sample well surface involve contacting the sample well with a block copolymer to form an antifouling overlay over a metal oxide surface of the sample well. In some aspects, methods of passivating and/or selectively functionalizing a sample well surface are provided.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: January 18, 2022
    Assignee: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Jeremy Lackey, Guojun Chen
  • Patent number: 11226290
    Abstract: System and methods for analyzing single molecules and performing nucleic acid sequencing. An integrated device may include multiple pixels with sample wells configured to receive a sample, which when excited, emits radiation. The integrated device includes a surface having a trench region recessed from a portion of the surface and an array of sample wells, disposed in the trench region. The integrated device also includes a waveguide configured to couple excitation energy to at least one sample well in the array and positioned at a first distance from a surface of the trench region and at a second distance from the surface in a region separate from the trench region. The first distance is smaller than the second distance. The system also includes an instrument that interfaces with the integrated device. The instrument may include an excitation energy source for providing excitation energy to the integrated device by coupling to an excitation energy coupling region of the integrated device.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: January 18, 2022
    Assignee: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Ali Kabiri, Gerard Schmid, Keith G. Fife, James Beach, Jason W. Sickler, Lawrence C. West, Paul E. Glenn, Kyle Preston, Farshid Ghasemi, Benjamin Cipriany, Jeremy Lackey
  • Patent number: 11181477
    Abstract: System and methods for analyzing single molecules and performing nucleic acid sequencing. An integrated device includes multiple pixels with sample wells configured to receive a sample, which when excited, emits radiation. The integrated device includes at least one waveguide configured to propagate excitation energy to the sample wells from a region of the integrated device configured to couple with an excitation energy source. A pixel may also include at least one element for directing the emission energy towards a sensor within the pixel. The system also includes an instrument that interfaces with the integrated device. The instrument may include an excitation energy source for providing excitation energy to the integrated device by coupling to an excitation energy coupling region of the integrated device.
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: November 23, 2021
    Assignee: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Ali Kabiri, Jason W. Sickler, Brett J. Gyarfas, Jeremy Lackey, Gerard Schmid, Lawrence C. West, Keith G. Fife, Benjamin Cipriany, Farshid Ghasemi
  • Patent number: 11175227
    Abstract: Apparatus and methods for analyzing single molecules and performing nucleic acid sequencing. An apparatus can include an assay chip that includes multiple pixels with sample wells configured to receive a sample, which, when excited, emits emission energy; at least one element for directing the emission energy in a particular direction; and a light path along which the emission energy travels from the sample well toward a sensor. The apparatus also includes an instrument that interfaces with the assay chip. The instrument includes an excitation light source for exciting the sample in each sample well; a plurality of sensors corresponding the sample wells. Each sensor may detect emission energy from a sample in a respective sample well. The instrument includes at least one optical element that directs the emission energy from each sample well towards a respective sensor of the plurality of sensors.
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: November 16, 2021
    Assignee: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Ali Kabiri, Jason W. Sickler, Brett J. Gyarfas, Jeremy Lackey, Gerard Schmid, Paul E. Glenn, Lawrence C. West, Benjamin Cipriany, Keith G. Fife
  • Patent number: 11174822
    Abstract: A compressor bypass reintroduction system includes a compressor intake manifold and a bypass conduit. The compressor intake manifold defines a fluid plenum. The compressor intake manifold is engageable with a compressor. The bypass conduit extends into the fluid plenum and includes an ejector line. The ejector line is configured to be substantially collinear with the compressor and to discharge flow toward the compressor. In some embodiments, an outlet of the ejector is disposed proximate to an outlet of the fluid plenum that discharges flow into the compressor.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: November 16, 2021
    Assignee: Cummins Power Generation Inc.
    Inventors: Jeremy A. Lackey, Alan C. Anderson, Joshua Bradley Bettis, Steven L. Leffler, Dilip Ramachandran, John A. Rennekamp, Axel O. Zur Loye, Andrew Guy Kitchen, George Martin Tolhurst
  • Publication number: 20210310066
    Abstract: Apparatus and techniques for electrokinetic loading of samples of interest into sub-micron-scale reaction chambers are described. Embodiments include an integrated device and related apparatus for analyzing samples in parallel. The integrated device may include at least one reaction chamber formed through a surface of the integrated device and configured to receive a sample of interest, such as a molecule of nucleic acid. The integrated device may further include electrodes patterned adjacent to the reaction chamber that produce one or more electric fields that assist loading the sample into the reaction chamber. The apparatus may further include a sample reservoir having a fluid seal with the surface of the integrated device and configured to hold a suspension containing the samples.
    Type: Application
    Filed: June 17, 2021
    Publication date: October 7, 2021
    Applicant: Quantum-Si Incorporated
    Inventors: Guojun Chen, Jeremy Lackey, Alexander Goryaynov, Gerard Schmid, Ali Kabiri, Jonathan M. Rothberg, Todd Rearick, Jonathan C. Schultz, Farshid Ghasemi, Keith G. Fife