Patents by Inventor Jeremy P. Kolenbrander

Jeremy P. Kolenbrander has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11692170
    Abstract: Described are embodiments that include methods and devices for separating composite liquids into components. Embodiments involve the use of a flexible membrane for separating a composite liquid into components. The composite liquid may include, in embodiments, a cellular containing liquid, such as whole blood or components of whole blood. In one specific embodiment, the composite liquid is a buffy coat.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: July 4, 2023
    Assignee: Terumo BCT, Inc.
    Inventors: James R. Ladtkow, Geoffrey M. Uhl, Jeremy P. Kolenbrander, Briden Ray Stanton
  • Publication number: 20200325446
    Abstract: Described are embodiments that include methods and devices for separating composite liquids into components. Embodiments involve the use of a flexible membrane for separating a composite liquid into components. The composite liquid may include, in embodiments, a cellular containing liquid, such as whole blood or components of whole blood. In one specific embodiment, the composite liquid is a buffy coat.
    Type: Application
    Filed: June 29, 2020
    Publication date: October 15, 2020
    Applicant: Terumo BCT, Inc.
    Inventors: James R. LADTKOW, Geoffrey M. UHL, Jeremy P. KOLENBRANDER, Briden Ray STANTON
  • Patent number: 10704023
    Abstract: Described are embodiments that include methods and devices for separating composite liquids into components. Embodiments involve the use of a flexible membrane for separating a composite liquid into components. The composite liquid may include, in embodiments, a cellular containing liquid, such as whole blood or components of whole blood. In one specific embodiment, the composite liquid is a buffy coat.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: July 7, 2020
    Assignee: Terumo BCT, Inc.
    Inventors: James R. Ladtkow, Geoffrey M. Uhl, Jeremy P. Kolenbrander, Briden Ray Stanton
  • Publication number: 20170369844
    Abstract: Described are embodiments that include methods and devices for separating composite liquids into components. Embodiments involve the use of a flexible membrane for separating a composite liquid into components. The composite liquid may include, in embodiments, a cellular containing liquid, such as whole blood or components of whole blood. In one specific embodiment, the composite liquid is a buffy coat.
    Type: Application
    Filed: September 11, 2017
    Publication date: December 28, 2017
    Applicant: Terumo BCT, Inc.
    Inventors: James R. LADTKOW, Geoffrey M. UHL, Jeremy P. KOLENBRANDER, Briden Ray STANTON
  • Patent number: 9758764
    Abstract: Described are embodiments that include methods and devices for separating composite liquids into components. Embodiments involve the use of a flexible membrane for separating a composite liquid into components. The composite liquid may include, in embodiments, a cellular containing liquid, such as whole blood or components of whole blood. In one specific embodiment, the composite liquid is a buffy coat.
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: September 12, 2017
    Assignee: Terumo BCT, Inc.
    Inventors: James R. Ladtkow, Geoffrey M. Uhl, Jeremy P. Kolenbrander, Briden Ray Stanton
  • Patent number: 9435736
    Abstract: A centrifugal blood separation system comprising a rotor, a light source, an optical sensor, a control system, a separation vessel, and an optical cell on the separation vessel. The optical cell has a first extraction port extending radially outwardly into the optical cell, a red blood cell extraction port downstream from the first extraction port and extending into the optical cell beyond the first extraction port; and a dam between said first extraction port and said red blood cell extraction port, having an upper edge and a lower edge, wherein the first extraction port and the red cell extraction port are radially between the upper edge and the lower edge of the dam. Also, a first extraction port having a bore having a first diameter, a lumen having a second diameter smaller than the first diameter, and a frustro-conical passageway coupling the bore to the lumen.
    Type: Grant
    Filed: August 29, 2013
    Date of Patent: September 6, 2016
    Assignee: Terumo BCT, Inc.
    Inventors: Jeremy P. Kolenbrander, Brian M. Holmes, Thomas J. Felt, James R. Ladtkow
  • Patent number: 9248446
    Abstract: A disposable blood separation set and a centrifugal blood processing system comprising a blood processing chamber adapted to be mounted on a rotor of a centrifuge; a frustro-conical cell separation chamber in fluid communication with the processing chamber, the cell separation chamber having an inlet, an outlet and a gravity valve inside the cell separation chamber. The valve is responsive to the gravitational field created by the speed of the rotor. When the rotor spins at high speed, the gravity valve may open the outlet at a location proximal to an axis of rotation of the rotor. When the rotor spins at a lower speed, the gravity valve may open the outlet at a location distal from the axis.
    Type: Grant
    Filed: February 13, 2014
    Date of Patent: February 2, 2016
    Assignee: Terumo BCT, Inc.
    Inventors: Jeremy P. Kolenbrander, Geoffrey Uhl
  • Publication number: 20140234183
    Abstract: A disposable blood separation set and a centrifugal blood processing system comprising a blood processing chamber adapted to be mounted on a rotor of a centrifuge; a frustro-conical cell separation chamber in fluid communication with the processing chamber, the cell separation chamber having an inlet, an outlet and a gravity valve inside the cell separation chamber. The valve is responsive to the gravitational field created by the speed of the rotor. When the rotor spins at high speed, the gravity valve may open the outlet at a location proximal to an axis of rotation of the rotor. When the rotor spins at a lower speed, the gravity valve may open the outlet at a location distal from the axis.
    Type: Application
    Filed: February 13, 2014
    Publication date: August 21, 2014
    Applicant: TERUMO BCT, INC.
    Inventors: Jeremy P. KOLENBRANDER, Geoffrey UHL
  • Publication number: 20140234829
    Abstract: Described are embodiments that include methods and devices for separating composite liquids into components. Embodiments involve the use of a flexible membrane for separating a composite liquid into components. The composite liquid may include, in embodiments, a cellular containing liquid, such as whole blood or components of whole blood. In one specific embodiment, the composite liquid is a buffy coat.
    Type: Application
    Filed: February 18, 2014
    Publication date: August 21, 2014
    Applicant: TERUMO BCT, INC.
    Inventors: James R. LADTKOW, Geoffrey M. UHL, Jeremy P. KOLENBRANDER, Briden Ray STANTON
  • Publication number: 20140005023
    Abstract: A centrifugal blood separation system comprising a rotor, a light source, an optical sensor, a control system, a separation vessel, and an optical cell on the separation vessel. The optical cell has a first extraction port extending radially outwardly into the optical cell, a red blood cell extraction port downstream from the first extraction port and extending into the optical cell beyond the first extraction port; and a dam between said first extraction port and said red blood cell extraction port, having an upper edge and a lower edge, wherein the first extraction port and the red cell extraction port are radially between the upper edge and the lower edge of the dam. Also, a first extraction port having a bore having a first diameter, a lumen having a second diameter smaller than the first diameter, and a frustro-conical passageway coupling the bore to the lumen.
    Type: Application
    Filed: August 29, 2013
    Publication date: January 2, 2014
    Applicant: Terumo BCT, Inc.
    Inventors: Jeremy P. KOLENBRANDER, Brian M. HOLMES, Thomas J. FELT, James R. LADTKOW
  • Patent number: 8535210
    Abstract: A centrifugal blood separation system comprising a rotor, a light source, an optical sensor, a control system, a separation vessel, and an optical cell on the separation vessel. The optical cell has a first extraction port extending radially outwardly into the optical cell, a red blood cell extraction port downstream from the first extraction port and extending into the optical cell beyond the first extraction port; and a dam between said first extraction port and said red blood cell extraction port, having an upper edge and a lower edge, wherein the first extraction port and the red cell extraction port are radially between the upper edge and the lower edge of the dam. Also, a first extraction port having a bore having a first diameter, a lumen having a second diameter smaller than the first diameter, and a frustro-conical passageway coupling the bore to the lumen.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: September 17, 2013
    Assignee: Terumo BCT, Inc.
    Inventors: Jeremy P. Kolenbrander, Brian M. Holmes, Thomas J. Felt, James R. Ladtkow
  • Patent number: 8449439
    Abstract: A centrifuge for separating blood having a camera observing fluid flow, and a controller controlling the flow. The location of an interface is detected by image processing steps, which may comprise the steps of “spoiling” the image, “diffusing” the image, “edge detection”, “edge linking”, “region-based confirmation”, and “interface calculation”. “Spoiling” reduces the number of pixels to be examined preferentially on orthogonal axis oriented with respect to the expected location of the interface or phase boundary. “Diffusing” smoothes out small oscillations in the interface boundary, making to the location of the interface more distinct. “Edge detection” computes the rate of change in pixel intensity. “Edge linking” connects adjacent maxima. “Region-based confirmation” creates a pseudo image of the regions that qualify as distinct. “Final edge calculation” uses the points where the shade changes in the pseudo image, averages the radial displacement of these points for the interface position.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: May 28, 2013
    Assignee: Terumo BCT, Inc.
    Inventors: Christopher Fletcher, William Sweat, Jeremy P. Kolenbrander, Aditya Dalvi, John R. Lindner
  • Publication number: 20110143905
    Abstract: A centrifugal blood separation system comprising a rotor, a light source, an optical sensor, a control system, a separation vessel, and an optical cell on the separation vessel. The optical cell has a first extraction port extending radially outwardly into the optical cell, a red blood cell extraction port downstream from the first extraction port and extending into the optical cell beyond the first extraction port; and a dam between said first extraction port and said red blood cell extraction port, having an upper edge and a lower edge, wherein the first extraction port and the red cell extraction port are radially between the upper edge and the lower edge of the dam. Also, a first extraction port having a bore having a first diameter, a lumen having a second diameter smaller than the first diameter, and a frustro-conical passageway coupling the bore to the lumen.
    Type: Application
    Filed: December 3, 2010
    Publication date: June 16, 2011
    Applicant: CARIDIANBCT, INC.
    Inventors: Jeremy P. KOLENBRANDER, Brian M. HOLMES, Thomas J. FELT, James R. LADTKOW
  • Patent number: 7943916
    Abstract: The invention relates generally to methods of monitoring and controlling the processing of blood and blood samples, particularly the separation of blood and blood samples into its components with a two-dimensional optical measurement and control device. The method may comprise the steps of providing a blood processing system comprising a density centrifuge blood processing system and an elutriation blood processing system; filling the elutriation blood processing system with a desired component; measuring a cellular flux of cells entering the elutriation blood processing system with a two-dimensional optical control system; and flushing the elutriation blood processing system.
    Type: Grant
    Filed: September 17, 2009
    Date of Patent: May 17, 2011
    Assignee: CaridianBCT, Inc.
    Inventors: Lee F. Carter, Jeremy P. Kolenbrander, James R. Ladtkow, Joseph A. Scibona, Jeffrey A. Steward, Chris Fletcher
  • Patent number: 7906771
    Abstract: The invention relates generally to methods of monitoring and controlling the processing of blood and blood samples, particularly the separation of blood and blood samples into its components. In one aspect, the invention relates to optical methods for measuring two-dimensional distributions of transmitted light intensities, scattered light intensities or both from a separation chamber of a density centrifuge. The method may include performing first and second measurements of an operating condition; analyzing the first and second measurements using a predictive data analysis algorithm; comparing the predicted operating condition to a desired operating condition; and adjusting at least one setting.
    Type: Grant
    Filed: September 17, 2009
    Date of Patent: March 15, 2011
    Assignee: CaridianBCT, Inc.
    Inventors: Lee F. Carter, Jeremy P. Kolenbrander, James R. Ladtkow, Joseph A. Scibona, Jeffrey A. Steward, Chris Fletcher
  • Publication number: 20100025336
    Abstract: The invention relates generally to methods of monitoring and controlling the processing of blood and blood samples, particularly the separation of blood and blood samples into its components. In one aspect, the invention relates to optical methods for measuring two-dimensional distributions of transmitted light intensities, scattered light intensities or both from a separation chamber of a density centrifuge. The method may include performing first and second measurements of an operating condition; analyzing the first and second measurements using a predictive data analysis algorithm; comparing the predicted operating condition to a desired operating condition; and adjusting at least one setting.
    Type: Application
    Filed: September 17, 2009
    Publication date: February 4, 2010
    Applicant: CARIDIANBCT, INC.
    Inventors: Lee F. CARTER, Jeremy P. KOLENBRANDER, James R. LADTKOW, Joseph A. SCIBONA, Jeffrey A. STEWARD, Chris FLETCHER
  • Publication number: 20100012592
    Abstract: The invention relates generally to methods of monitoring and controlling the processing of blood and blood samples, particularly the separation of blood and blood samples into its components with a two-dimensional optical measurement and control device. The method may comprise the steps of providing a blood processing system comprising a density centrifuge blood processing system and an elutriation blood processing system; filling the elutriation blood processing system with a desired component; measuring a cellular flux of cells entering the elutriation blood processing system with a two-dimensional optical control system; and flushing the elutriation blood processing system.
    Type: Application
    Filed: September 17, 2009
    Publication date: January 21, 2010
    Applicant: CARIDIANBCT, INC.
    Inventors: Lee F. CARTER, Jeremy P. KOLENBRANDER, James R. LADTKOW, Joseph A. SCIBONA, Jeffrey A. STEWARD, Chris FLETCHER
  • Patent number: 7605388
    Abstract: The invention relates to an optical cell for a separation chamber of a density centrifuge blood processing system for separating fluid components comprising an extraction chamber having a first external optical surface for transmitting at least a portion of an incident optical beam; and an extraction port having an axial bore for passing fluid components and a first external optical surface for transmitting at least a portion of the incident optical beam; wherein said first external optical surface of said extraction chamber and said first external optical surface of said extraction port are both positioned within the depth of field of a light collection element.
    Type: Grant
    Filed: July 7, 2008
    Date of Patent: October 20, 2009
    Assignee: CaridianBCT, Inc.
    Inventors: Lee F. Carter, Jeremy P. Kolenbrander, James R. Ladtkow, Joseph A. Scibona, Jeffrey A. Steward, Chris Fletcher
  • Publication number: 20080283781
    Abstract: The invention relates to an optical cell for a separation chamber of a density centrifuge blood processing system for separating fluid components comprising an extraction chamber having a first external optical surface for transmitting at least a portion of an incident optical beam; and an extraction port having an axial bore for passing fluid components and a first external optical surface for transmitting at least a portion of the incident optical beam; wherein said first external optical surface of said extraction chamber and said first external optical surface of said extraction port are both positioned within the depth of field of a light collection element.
    Type: Application
    Filed: July 7, 2008
    Publication date: November 20, 2008
    Applicant: GAMBRO BCT, INC.
    Inventors: Lee F. CARTER, Jeremy P. KOLENBRANDER, James R. LADTKOW, Joseph A. SCIBONA, Jeffrey A. STEWARD, Chris FLETCHER
  • Patent number: 7422693
    Abstract: The invention relates generally to methods of monitoring and controlling the processing of blood and blood samples, particularly the separation of blood and blood samples into its components. In one aspect, the invention relates to optical methods, devices and device components for measuring two-dimensional distributions of transmitted light intensities, scattered light intensities or both from a separation chamber of a density centrifuge. In embodiment, two-dimensional distributions of transmitted light intensities, scattered light intensities or both measured by the methods of the present invention comprise images of a separation chamber or component thereof, such as an optical cell of a separation chamber. In another aspect, the present invention relates to multifunctional monitoring and control systems for blood processing, particularly blood processing via density centrifugation.
    Type: Grant
    Filed: July 1, 2004
    Date of Patent: September 9, 2008
    Assignee: Caridianbct, Inc.
    Inventors: Lee F. Carter, Jeremy P. Kolenbrander, James R. Ladtkow, Joseph A. Scibona, Jeffrey A. Steward, Chris Fletcher