Patents by Inventor Jeremy V. Horgan

Jeremy V. Horgan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10132389
    Abstract: A method and system are provided for shifting a vehicle transmission having several members. Each member is a first, second, or third node of a planetary gear set (of multiple planetary gear sets), or an input, output, or stationary member. A first torque transmitting mechanism is applied to transfer torque between first and second members in a low gear state. In some versions, a second torque transmitting mechanism is applied in the low gear state without substantially transferring torque between third and fourth members, and then the second torque transmitting mechanism is disengaged. A third torque transmitting mechanism is then applied without substantially transferring torque between the third and fourth members in the low gear state. The transmission is upshifted by disengaging the first torque transmitting mechanism, keeping the third torque transmitting mechanism applied, and applying the second torque transmitting mechanism to transfer torque between the third and fourth members.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: November 20, 2018
    Inventors: Joel H. Gunderson, Jeremy V Horgan, Dongxu Li
  • Patent number: 9869387
    Abstract: A system includes a torque converter having a turbine, a transmission having friction clutches and an input member connected to the turbine, and a controller. The controller is programmed to control a change-of-mind shift maneuver of the transmission. By executing a method, the controller detects the change-of-mind shift maneuver, predicts an acceleration profile of the turbine for a next-requested shift of the detected shift maneuver as a function of a calibrated desired shift time and an output speed of the transmission, calculates a shift control value for a next-requested shift of the shift maneuver using the predicted acceleration profile, and executes the next-requested shift via the clutches using the calculated shift control value. The shift maneuver may be a skip-at-sync quick shift-to-quick shift or power downshift-to-power downshift. The shift value may be a clutch pressure for an offgoing holding clutch or a torque management level from an engine.
    Type: Grant
    Filed: August 5, 2015
    Date of Patent: January 16, 2018
    Assignee: GM Global Technology Operations LLC
    Inventors: Dara Monajemi, Brian H Fiore, Jeremy V Horgan
  • Publication number: 20170363179
    Abstract: A method and system are provided for shifting a vehicle transmission having several members. Each member is a first, second, or third node of a planetary gear set (of multiple planetary gear sets), or an input, output, or stationary member. A first torque transmitting mechanism is applied to transfer torque between first and second members in a low gear state. In some versions, a second torque transmitting mechanism is applied in the low gear state without substantially transferring torque between third and fourth members, and then the second torque transmitting mechanism is disengaged. A third torque transmitting mechanism is then applied without substantially transferring torque between the third and fourth members in the low gear state. The transmission is upshifted by disengaging the first torque transmitting mechanism, keeping the third torque transmitting mechanism applied, and applying the second torque transmitting mechanism to transfer torque between the third and fourth members.
    Type: Application
    Filed: October 7, 2016
    Publication date: December 21, 2017
    Inventors: Joel H. Gunderson, Jeremy V. Horgan, Dongxu Li
  • Patent number: 9738285
    Abstract: A method of controlling a transmission includes determining if an internal combustion engine of the vehicle is currently operating with active fuel management, or if the internal combustion engine is currently operating without active fuel management. The vehicle controller further determines if a possible engine torque is equal to, greater than, or less than a required engine torque. The transmission is upshifted when the internal combustion engine is currently operating with active fuel management, and when the possible engine torque is equal to or greater than the required engine torque. When the possible engine torque is less than the required engine torque, active fuel management is exited so that the internal combustion engine is currently operating without active fuel management. When the internal combustion engine is currently operating without active fuel management, the vehicle controller upshifts the transmission from the current gear ratio to the higher gear ratio.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: August 22, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Mark A. Schang, Jeffrey M. Kaiser, Jeremy V. Horgan
  • Patent number: 9701299
    Abstract: A system includes a desired turbine power module and an engine actuator module. The desired turbine power module determines a desired amount of power at a turbine of a torque converter based on an accelerator pedal position and a vehicle speed. The torque converter transfers torque from an engine to a driveline and includes an impeller and the turbine. The impeller is connected to a crankshaft of the engine. The turbine is connected to a transmission in the driveline and is at least one of hydraulically coupled and mechanically coupled to the impeller. The engine actuator module controls an actuator of the engine based on the desired turbine power.
    Type: Grant
    Filed: April 9, 2014
    Date of Patent: July 11, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Jeremy V. Horgan, Todd R. Shupe, Christine Cabrera
  • Publication number: 20170037957
    Abstract: A system includes a torque converter having a turbine, a transmission having friction clutches and an input member connected to the turbine, and a controller. The controller is programmed to control a change-of-mind shift maneuver of the transmission. By executing a method, the controller detects the change-of-mind shift maneuver, predicts an acceleration profile of the turbine for a next-requested shift of the detected shift maneuver as a function of a calibrated desired shift time and an output speed of the transmission, calculates a shift control value for a next-requested shift of the shift maneuver using the predicted acceleration profile, and executes the next-requested shift via the clutches using the calculated shift control value. The shift maneuver may be a skip-at-sync quick shift-to-quick shift or power downshift-to-power downshift. The shift value may be a clutch pressure for an offgoing holding clutch or a torque management level from an engine.
    Type: Application
    Filed: August 5, 2015
    Publication date: February 9, 2017
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Dara Monajemi, Brian H Fiore, Jeremy V Horgan
  • Patent number: 9249881
    Abstract: A method of controlling clutches in a multi-speed transmission includes beginning a current shift from a starting gear to an initial target gear, and determining whether the current shift is a downshift. The method determines jump-stage eligibility of a first clutch. Determining jump-stage eligibility includes determining whether the first clutch is a holding clutch for the current shift, and determining whether the first clutch is an off-going clutch for a legal shift from the initial starting gear to an adjusted target gear having a higher speed ratio than the initial starting gear. If the first clutch is not jump-stage eligible, the method maintains pressure of the first clutch at a current pressure. If the first clutch is jump-stage eligible, the method reduces the pressure of the first clutch from the current pressure to a staging pressure, which is greater than a slipping pressure.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: February 2, 2016
    Assignee: GM Global Technology Operations LLC
    Inventors: Dara Monajemi, Jeremy V. Horgan, Matthew Pruski, Brian H. Fiore
  • Patent number: 9242630
    Abstract: A powertrain system includes an internal combustion engine rotatably coupled to a non-combustion torque machine and a torque converter which is rotatably coupled to an input member of a transmission. A method for operating the powertrain system includes operating the torque converter in a controlled slip operating state and controlling a torque converter clutch capacity in response to a driver requested braking torque. Target torque outputs from the engine and from the torque machine are determined in response to the driver requested braking torque subjected to a time delay. A torque modifier for the torque machine is determined in response to a torque converter clutch slip error. Torque output from the engine is controlled in response to the target torque output from the engine, and torque output from the torque machine is controlled in response to the target torque output and the torque modifier from the torque machine.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: January 26, 2016
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: John S. Mitchell, Jeremy V. Horgan, Christopher E. Whitney, Scott A. Hearld
  • Publication number: 20150239451
    Abstract: A system according to the principles of the present disclosure includes a desired turbine power module and an engine actuator module. The desired turbine power module determines a desired amount of power at a turbine of a torque converter based on an accelerator pedal position and a vehicle speed. The torque converter transfers torque from an engine to a driveline and includes an impeller and the turbine. The impeller is connected to a crankshaft of the engine. The turbine is connected to a transmission in the driveline and is at least one of hydraulically coupled and mechanically coupled to the impeller. The engine actuator module controls an actuator of the engine based on the desired turbine power.
    Type: Application
    Filed: April 9, 2014
    Publication date: August 27, 2015
    Applicant: GM Global Technology Operations LLC
    Inventors: JEREMY V. HORGAN, Todd R. Shupe, Christine Cabrera
  • Publication number: 20150210262
    Abstract: A powertrain system includes an internal combustion engine rotatably coupled to a non-combustion torque machine and a torque converter which is rotatably coupled to an input member of a transmission. A method for operating the powertrain system includes operating the torque converter in a controlled slip operating state and controlling a torque converter clutch capacity in response to a driver requested braking torque. Target torque outputs from the engine and from the torque machine are determined in response to the driver requested braking torque subjected to a time delay. A torque modifier for the torque machine is determined in response to a torque converter clutch slip error. Torque output from the engine is controlled in response to the target torque output from the engine, and torque output from the torque machine is controlled in response to the target torque output and the torque modifier from the torque machine.
    Type: Application
    Filed: January 28, 2014
    Publication date: July 30, 2015
    Inventors: JOHN S. MITCHELL, JEREMY V. HORGAN, CHRISTOPHER E. WHITNEY, SCOTT A. HEARLD
  • Patent number: 8977457
    Abstract: A vehicle powertrain includes an engine, transmission, torque converter assembly, and controller. The controller includes recorded lumped inertia models of the powertrain and instructions for executing a clutch-to-clutch shift using these models. The models collectively reduce powertrain dynamics to two or three degrees of freedom. The controller executes a method to estimate clutch torques using the models. The models may include a first primary inertia block describing engine inertia and inertia of a torque converter pump, and a second primary inertia model describing the inertia of the turbine and transmission as reflected to the input member. The second primary inertia model includes bulk inertia models for each fixed gear state and each possible shift maneuver. The controller derives a required output torque value as a closed-loop target value using the lumped inertia models and a requested input torque, and uses the estimated clutch torque to achieve the target value.
    Type: Grant
    Filed: July 15, 2013
    Date of Patent: March 10, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Darrell Lee Robinette, Daniel N. Wehrwein, Jeremy V. Horgan
  • Publication number: 20150019090
    Abstract: A vehicle powertrain includes an engine, transmission, torque converter assembly, and controller. The controller includes recorded lumped inertia models of the powertrain and instructions for executing a clutch-to-clutch shift using these models. The models collectively reduce powertrain dynamics to two or three degrees of freedom. The controller executes a method to estimate clutch torques using the models. The models may include a first primary inertia block describing engine inertia and inertia of a torque converter pump, and a second primary inertia model describing the inertia of the turbine and transmission as reflected to the input member. The second primary inertia model includes bulk inertia models for each fixed gear state and each possible shift maneuver. The controller derives a required output torque value as a closed-loop target value using the lumped inertia models and a requested input torque, and uses the estimated clutch torque to achieve the target value.
    Type: Application
    Filed: July 15, 2013
    Publication date: January 15, 2015
    Inventors: Darrell Lee Robinette, Daniel N. Wehrwein, Jeremy V. Horgan
  • Patent number: 8657721
    Abstract: A powertrain system includes an engine control module that generates a negative torque transition signal based on a pending negative torque event of an engine. A transmission control module receives the negative torque transition signal from the engine control module. The transmission control module increases a slip speed of a torque converter clutch in preparation for the pending negative torque event by adjusting pressure in the torque converter clutch prior to the pending negative torque event. The transmission control module decreases the slip speed in the torque converter clutch based on completion of a transition at least one of to the pending negative torque event and from the pending negative torque event.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: February 25, 2014
    Inventors: Christopher E. Whitney, Jeremy V. Horgan, Scott A. Hearld, Lars Mikael Buur, Ryan Goode, Krishnendu Kar
  • Patent number: 8463515
    Abstract: A powertrain includes a torque generative device and a torque converter having an impeller, a turbine and a torque converter clutch. A method to control torque converter slip includes monitoring a reference slip and a turbine speed of the torque converter, determining a turbine torque based upon the reference slip and the turbine speed, determining a feed forward torque converter clutch pressure command based upon the turbine torque, a torque generative device torque, and a TCC gain, and controlling the torque converter clutch based upon the feed forward torque converter clutch pressure command.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: June 11, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Kumaraswamy V. Hebbale, Chi-Kuan Kao, Chunhao J. Lee, Xu Chen, Jeremy V. Horgan, Farzad Samie
  • Publication number: 20120234123
    Abstract: A powertrain system includes an engine control module that generates a negative torque transition signal based on a pending negative torque event of an engine. A transmission control module receives the negative torque transition signal from the engine control module. The transmission control module increases a slip speed of a torque converter clutch in preparation for the pending negative torque event by adjusting pressure in the torque converter clutch prior to the pending negative torque event. The transmission control module decreases the slip speed in the torque converter clutch based on completion of a transition at least one of to the pending negative torque event and from the pending negative torque event.
    Type: Application
    Filed: May 5, 2011
    Publication date: September 20, 2012
    Applicant: GM Global Technology Operations LLC
    Inventors: Christopher E. Whitney, Jeremy V. Horgan, Scott A. Hearld, Lars Mikael Buur, Ryan Goode, Krishnendu Kar
  • Publication number: 20120035819
    Abstract: A powertrain includes a torque generative device and a torque converter having an impeller, a turbine and a torque converter clutch. A method to control torque converter slip includes monitoring a reference slip and a turbine speed of the torque converter, determining a turbine torque based upon the reference slip and the turbine speed, determining a feed forward torque converter clutch pressure command based upon the turbine torque, a torque generative device torque, and a TCC gain, and controlling the torque converter clutch based upon the feed forward torque converter clutch pressure command.
    Type: Application
    Filed: August 4, 2010
    Publication date: February 9, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Kumaraswamy V. Hebbale, Chi-Kuan Kao, Chunhao J. Lee, Xu Chen, Jeremy V. Horgan, Farzad Samie