Patents by Inventor Jerome E. Freedman

Jerome E. Freedman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5481270
    Abstract: A method and apparatus for identifying a remote target includes a transmitter for transmitting pulses of energy toward the target for generating echo signals, and a receiver for receiving the echo signals, and for generating received signals representing the target, noise and clutter. The received signals are applied through a plurality of cascaded channels, each including a Doppler filter cascaded with a multiplier, each also including range sidelobe suppression, for, in each of the cascaded channels, narrowband filtering the signals passing therethrough about a controllable center frequency, and for, if necessary, converting the signals passing therethrough to baseband, for thereby applying one of a plurality of Doppler filtered baseband signals to the input of each of the range sidelobe suppressors of each of the cascaded channels. The power of the Doppler filtered baseband signals in each range bin is evaluated for determining the frequency at which the spectral density is greatest.
    Type: Grant
    Filed: March 4, 1994
    Date of Patent: January 2, 1996
    Assignee: Martin Marietta Corporation
    Inventors: Harry Urkowitz, Nicholas J. Bucci, Jerome E. Freedman
  • Patent number: 5128683
    Abstract: A multipurpose system provides radar surveillance for air traffic control purposes. The system includes four separate active phased-array antennas, each with .+-.45.degree. coverage in azimuth, from 0.degree. to 60.degree. in elevation. Each antenna element of each phased-array antenna is coupled by a low-loss path to the solid-state amplifier associated with a transmit-receive (TR) module. Each antenna produces a sequence of pencil beams, which requires less transmitted power from the TR modules than a fan beam, but requires more time because the pencil beam must be sequenced to cover the same volume as the fan beam. In order to scan the volume in a short time, the PRF is responsive to the elevation angle of the beam, so higher elevation angles use a higher PRF. Low elevation angle beams receive long transmitter pulses for high power, and pulse compression is used to restored range resolution, but the long pulse results in a large minimum range within which targets cannot be detected.
    Type: Grant
    Filed: April 16, 1991
    Date of Patent: July 7, 1992
    Assignee: General Electric Company
    Inventors: Jerome E. Freedman, John J. Gallagher, Michael S. Perry
  • Patent number: 5115244
    Abstract: A multipurpose system provides radar surveillance for air traffic control purposes. The system includes four separate active phased-array antennas, each with .+-.45.degree. coverage in azimuth, from 0.degree. to 60.degree. in elevation. Each antenna element of each phased-array antenna is coupled by a low-loss path to the solid-state amplifier associated with a transmit-receive (TR) module. Each antenna produces a sequence of pencil beams, which requires less transmitted power from the TR modules than a fan beam, but requires more time because the pencil beam must be sequenced to cover the same volume as the fan beam. In order to scan the volume in a short time, the PRF is responsive to the elevation angle of the beam, so higher elevation angles use a higher PRF. Low elevation angle beams receive long transmitter pulses for high power, and pulse compression is used to restore range resolution, but the long pulse results in a large minimum range within which targets cannot be detected.
    Type: Grant
    Filed: April 16, 1991
    Date of Patent: May 19, 1992
    Assignee: General Electric Company
    Inventors: Jerome E. Freedman, Michael S. Perry, John J. Gallagher
  • Patent number: 5115243
    Abstract: A multipurpose system provides radar surveillance for air traffic control purposes. The system includes four separate active phased-array antennas, each with .+-.45.degree. coverage in azimuth, from 0.degree. to 60.degree. in elevation. Each antenna element of each phased-array antenna is coupled by a low-loss path to the solid-state amplifier associated with a transmit-receive (TR) module. Each antenna produces a sequence of pencil beams, which requires less transmitted power from the TR modules than a fan beam, but requires more time because the pencil beam must be sequenced to cover the same volume as the fan beam. In order to scan the volume in a short time, the PRF is responsive to the elevation angle of the beam, so higher elevation angles use a higher PRF. Low elevation angle beams receive long transmitter pulses for high power, and pulse compression is used to restore range resolution, but the long pulse results in a large minimum range within which targets cannot be detected.
    Type: Grant
    Filed: April 16, 1991
    Date of Patent: May 19, 1992
    Assignee: General Electric Co.
    Inventors: Michael S. Perry, Jerome E. Freedman, John J. Gallagher
  • Patent number: 5103233
    Abstract: A multipurpose system provides radar surveillance for air traffic control purposes. The system includes four separate active phased-array antennas, each with .+-.45.degree. coverage in azimuth, from 0.degree. to 60.degree. in elevation. Each antenna element of each phased-array antenna is coupled by a low-loss path to the solid-state amplifier associated with a transmit-receive (TR) module. Each antenna produces a sequence of pencil beams, which requires less transmitted power from the TR modules than a fan beam, but requires more time because the pencil beam must be sequenced to cover the same volume as the fan beam. In order to scan the volume in a short time, the PRF is responsive to the elevation angle of the beam, so higher elevation angles use a higher PRF. Low elevation angle beams receive long transmitter pulses for high power, and pulse compression is used to restore range resolution, but the long pulse results in a large minimum range within which targets cannot be detected.
    Type: Grant
    Filed: April 16, 1991
    Date of Patent: April 7, 1992
    Assignee: General Electric Co.
    Inventors: John J. Gallagher, Jerome E. Freedman, Michael S. Perry