Patents by Inventor Jesse D. Ormston

Jesse D. Ormston has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10746784
    Abstract: To perform system level physical connectivity monitoring measurements, a test signal may be generated in an instrument and transmitted down a signal path extending from the instrument to a device. In a static state (high or low), the test signal generator may produce a specified AC impedance at the point where the signal path connects to the instrument for a designated back termination. A response signal resulting from the test signal may be acquired and used to obtain an impedance value and/or reflection coefficient value representative of the signal path and an additional signal path extending from the source of the test signal to the signal path. The measured response may be compared to an expected response to determine a condition of any component(s) in the signal path and/or in the additional signal path. The expected response may be represented by masks (low and high) created during automated test development.
    Type: Grant
    Filed: November 5, 2018
    Date of Patent: August 18, 2020
    Assignee: National Instruments Corporation
    Inventor: Jesse D. Ormston
  • Publication number: 20190137566
    Abstract: To perform system level physical connectivity monitoring measurements, a test signal may be generated in an instrument and transmitted down a signal path extending from the instrument to a device. In a static state (high or low), the test signal generator may produce a specified AC impedance at the point where the signal path connects to the instrument for a designated back termination. A response signal resulting from the test signal may be acquired and used to obtain an impedance value and/or reflection coefficient value representative of the signal path and an additional signal path extending from the source of the test signal to the signal path. The measured response may be compared to an expected response to determine a condition of any component(s) in the signal path and/or in the additional signal path. The expected response may be represented by masks (low and high) created during automated test development.
    Type: Application
    Filed: November 5, 2018
    Publication date: May 9, 2019
    Inventor: Jesse D. Ormston