Patents by Inventor Jesse M. Jaynes

Jesse M. Jaynes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240033324
    Abstract: Aspergillus flavus is an opportunistic, saprophytic fungus that infects maize and other fatty acid-rich food and feed crops and produces toxic and carcinogenic secondary metabolites known as aflatoxins. In vitro studies showed a five-fold increase in antifungal activity of AGM182 (vs. tachyplesin1) against A. flavus. Transgenic maize plants expressing AGM182 under maize Ubiquitin-1 promoter were produced through Agrobacterium-mediated transformation. PCR products confirmed integration of the AGM182 gene, while RT-PCR of maize RNA confirmed the presence of AGM182 transcripts. Maize kernel screening assay using a highly aflatoxigenic A. flavus strain (AF70) showed up to 72% reduction in fungal growth in the transgenic AGM182 seeds compared to isogenic negative control seeds.
    Type: Application
    Filed: July 3, 2023
    Publication date: February 1, 2024
    Inventors: Jesse M. Jaynes, Kanniah Rajasekaran, Jeffrey W. Cary, Ronald Sayler, Rajtilak Majumdar
  • Patent number: 11690894
    Abstract: Aspergillus flavus is an opportunistic, saprophytic fungus that infects maize and other fatty acid-rich food and feed crops and produces toxic and carcinogenic secondary metabolites known as aflatoxins. In vitro studies showed a five-fold increase in antifungal activity of AGM182 (vs. tachyplesin1) against A. flavus. Transgenic maize plants expressing AGM182 under maize Ubiquitin-1 promoter were produced through Agrobacterium-mediated transformation. PCR products confirmed integration of the AGM182 gene, while RT-PCR of maize RNA confirmed the presence of AGM182 transcripts. Maize kernel screening assay using a highly aflatoxigenic A. flavus strain (AF70) showed up to 72% reduction in fungal growth in the transgenic AGM182 seeds compared to isogenic negative control seeds.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: July 4, 2023
    Assignees: GENVOR INC., THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF AGRICULTURE
    Inventors: Jesse M. Jaynes, Kanniah Rajasekaran, Jeffrey W. Cary, Ronald Sayler, Rajtilak Majumdar
  • Publication number: 20220143130
    Abstract: The present disclosure provides novel peptides that having immunomodulatory activities in vitro and in vivo. The peptides can include a particular striapathic region of alternating hydrophilic and hydrophobic modules that can adopt an amphipathic conformation under physiological conditions. This disclosure provides peptides that can specifically bind to key functional regions on one or more signaling proteins, particularly pro-inflammatory cytokines, macrophage inhibition proteins, and histone regulation proteins. This disclosure includes peptides that are sufficiently stable in the circulation to allow for intravenous administration. Pharmaceutical compositions including the subject peptides are also provided. The subject peptides find use in methods of modulating macrophage activity. In some cases, the peptide is a CD206-binding agent. Also provided are methods of treating a subject for a condition associated with chronic inflammation using the peptides and compositions of this disclosure.
    Type: Application
    Filed: November 29, 2021
    Publication date: May 12, 2022
    Inventors: Jesse M. Jaynes, Henry Wilfred Lopez, George R. Martin, Clayton Yates, Bahja Ahmed Abdi, Richard Stratton, Charles Garvin
  • Patent number: 11266712
    Abstract: Aspects of the present invention relate to peptides having antimicrobial activity. In certain aspects, the invention relates to peptides having potent antimicrobial activity, broad-spectrum antimicrobial activity, and/or the ability to kill otherwise antibiotic-resistant microbes, or microbes protected by biofilms.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: March 8, 2022
    Assignee: Riptide Bioscience, Inc.
    Inventors: Jesse M. Jaynes, L. Edward Clemens, Henry Wilfred Lopez, George R. Martin, Kathryn Woodburn
  • Publication number: 20210308219
    Abstract: Aspergillus flavus is an opportunistic, saprophytic fungus that infects maize and other fatty acid-rich food and feed crops and produces toxic and carcinogenic secondary metabolites known as aflatoxins. In vitro studies showed a five-fold increase in antifungal activity of AGM182 (vs. tachyplesin1) against A. flavus. Transgenic maize plants expressing AGM182 under maize Ubiquitin-1 promoter were produced through Agrobacterium-mediated transformation. PCR products confirmed integration of the AGM182 gene, while RT-PCR of maize RNA confirmed the presence of AGM182 transcripts. Maize kernel screening assay using a highly aflatoxigenic A. flavus strain (AF70) showed up to 72% reduction in fungal growth in the transgenic AGM182 seeds compared to isogenic negative control seeds.
    Type: Application
    Filed: June 21, 2021
    Publication date: October 7, 2021
    Inventors: Jesse M. Jaynes, Kanniah Rajasekaran, Jeffrey W. Cary, Ronald Sayler, Rajtilak Majumdar
  • Publication number: 20200230200
    Abstract: Aspects of the present invention relate to peptides having antimicrobial activity. In certain aspects, the invention relates to peptides having potent antimicrobial activity, broad-spectrum antimicrobial activity, and/or the ability to kill otherwise antibiotic-resistant microbes, or microbes protected by biofilms.
    Type: Application
    Filed: January 24, 2020
    Publication date: July 23, 2020
    Inventors: Jesse M. Jaynes, L. Edward Clemens, Henry Wilfred Lopez, George R. Martin, Kathryn Woodburn
  • Patent number: 10016480
    Abstract: Methods for treating a subject for pancreatic cancer via administration of small anti-inflammatory peptides are disclosed. The peptides may be administered in conjunction with another therapeutic agent, such as a chemotherapeutic agent, or therapeutic regimen. In some cases, the anti-inflammatory peptide that finds use in the subject methods has the amino acid sequence Lys-Phe-Arg-Lys-Ala-Phe-Lys-Arg-Phe-Phe (SEQ ID NO:1) or a multimer, derivative, or variant thereof.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: July 10, 2018
    Assignees: The United States of America, as Represented by the Secretary, Dept. of Health and Human Services, Riptide Bioscience, Inc.
    Inventors: Udo Rudloff, Jesse M. Jaynes, Henry W. Lopez, George R. Martin, Clayton Yates
  • Publication number: 20170252396
    Abstract: Methods for treating pancreatic cancer via administration of small anti-inflammatory peptides. The peptides may be administered in conjunction with another therapeutic agent or therapeutic regimen.
    Type: Application
    Filed: October 13, 2015
    Publication date: September 7, 2017
    Applicants: The United States of America, as represented by the Secretary, Department of Health and Human Serv, Riptide Bioscience, Inc.
    Inventors: Udo Rudloff, Jesse M. Jaynes, Henry W. Lopez, George R. Martin, Clayton Yates
  • Patent number: 9492499
    Abstract: Aspects of the present invention relate to peptides having anti-inflammatory activity, compositions containing one or more of the peptides, and use of the peptides to treat conditions associated with excessive inflammation in animals, particularly humans and other mammals.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: November 15, 2016
    Assignee: Riptide Bioscience, Inc.
    Inventors: Jesse M. Jaynes, Henry W. Lopez, George R. Martin, Clayton Yates, Charles E. Garvin
  • Publication number: 20160101150
    Abstract: Aspects of the present invention relate to peptides having anti-inflammatory activity, compositions containing one or more of the peptides, and use of the peptides to treat conditions associated with excessive inflammation in animals, particularly humans and other mammals.
    Type: Application
    Filed: October 13, 2015
    Publication date: April 14, 2016
    Inventors: Jesse M. Jaynes, Henry W. Lopez, George R. Martin, Clayton Yates, Charles E. Garvin
  • Patent number: 8258100
    Abstract: Amphipathic lytic peptides are ideally suited to use in a ligand/cytotoxin combination to specifically inhibit cells that are driven by or are dependent upon a specific ligand interaction; for example, to induce sterility or long-term contraception, or to attack tumor cells, or to selectively lyse virally-infected cells, or to attack lymphocytes responsible for autoimmune diseases. The peptides act directly on cell membranes, and need not be internalized. Administering a combination of gonadotropin-releasing hormone (GnRH) (or a GnRH agonist) and a membrane-active lytic peptide produces long-term contraception or sterilization in animals in vivo. Administering in vivo a combination of a ligand and a membrane-active lytic peptide kills cells with a receptor for the ligand. The compounds are relatively small, and are not antigenic. Lysis of gonadotropes has been observed to be very rapid (on the order of ten minutes.) Lysis of tumor cells is rapid.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: September 4, 2012
    Assignee: Board of Supervisors of Louisiana State University and Agricultural and Mechanical College
    Inventors: Frederick M. Enright, Jesse M. Jaynes, William Hansel, Kenneth L. Koonce, Samuel M. McCann, Wen H. Yu, Patricia A. Melrose, Lane D. Foil, Philip H. Elzer
  • Publication number: 20100016227
    Abstract: Amphipathic lytic peptides are ideally suited to use in a ligand/cytotoxin combination to specifically inhibit cells that are driven by or are dependent upon a specific ligand interaction; for example, to induce sterility or long-term contraception, or to attack tumor cells, or to selectively lyse virally-infected cells, or to attack lymphocytes responsible for autoimmune diseases. The peptides act directly on cell membranes, and need not be internalized. Administering a combination of gonadotropin-releasing hormone (GnRH) (or a GnRH agonist) and a membrane-active lytic peptide produces long-term contraception or sterilization in animals in vivo. Administering in vivo a combination of a ligand and a membrane-active lytic peptide kills cells with a receptor for the ligand. The compounds are relatively small, and are not antigenic. Lysis of gonadotropes has been observed to be very rapid (on the order of ten minutes.) Lysis of tumor cells is rapid.
    Type: Application
    Filed: June 19, 2009
    Publication date: January 21, 2010
    Applicant: BOARD OF SUPERVISORS OF LOUISIANA STATE UNIVERSITY AND AGRICULTURAL AND MECHNICAL COLLEGE
    Inventors: FREDERICK M. ENRIGHT, JESSE M. JAYNES, WILLIAM HANSEL, KENNETH L. KOONCE, SAMUEL M. MCCANN, WEN H. YU, PATRICIA A. MELROSE, LANE D. FOIL, PHILIP H. ELZER
  • Patent number: 7566777
    Abstract: Amphipathic lytic peptides are ideally suited to use in a ligand/cytotoxin combination to specifically inhibit cells that are driven by or are dependent upon a specific ligand interaction; for example, to induce sterility or long-term contraception, or to attack tumor cells, or to selectively lyse virally-infected cells, or to attack lymphocytes responsible for autoimmune diseases. The peptides act directly on cell membranes, and need not be internalized. Administering a combination of gonadotropin-releasing hormone (GnRH) (or a GnRH agonist) and a membrane-active lytic peptide produces long-term contraception or sterilization in animals in vivo. Administering in vivo a combination of a ligand and a membrane-active lytic peptide kills cells with a receptor for the ligand. The compounds are relatively small, and are not antigenic. Lysis of gonadotropes has been observed to be very rapid (on the order of ten minutes.) Lysis of tumor cells is rapid.
    Type: Grant
    Filed: July 11, 2003
    Date of Patent: July 28, 2009
    Assignee: Board of Supervisors of Louisana State University and Agricultural and Mechanical College
    Inventors: Frederick M. Enright, Jesse M. Jaynes, William Hansel, Kenneth L. Koonce, Samuel M. McCann, Wen H. Yu, Patricia A. Melrose, Lane D. Foil, Philip H. Elzer
  • Publication number: 20040018967
    Abstract: Amphipathic lytic peptides are ideally suited to use in a ligand/cytotoxin combination to specifically inhibit cells that are driven by or are dependent upon a specific ligand interaction; for example, to induce sterility or long-term contraception, or to attack tumor cells, or to selectively lyse virally-infected cells, or to attack lymphocytes responsible for autoimmune diseases. The peptides act directly on cell membranes, and need not be internalized. Administering a combination of gonadotropin-releasing hormone (GnRH) (or a GnRH agonist) and a membrane-active lytic peptide produces long-term contraception or sterilization in animals in vivo. Administering in vivo a combination of a ligand and a membrane-active lytic peptide kills cells with a receptor for the ligand. The compounds are relatively small, and are not antigenic. Lysis of gonadotropes has been observed to be very rapid (on the order of ten minutes.) Lysis of tumor cells is rapid.
    Type: Application
    Filed: July 11, 2003
    Publication date: January 29, 2004
    Inventors: Frederick M. Enright, Jesse M. Jaynes, William Hansel, Kenneth L. Koonce, Samuel M. McCann, Wen H. Yu, Patricia A. Melrose, Lane D. Foil, Philip H. Elzer
  • Patent number: 6680058
    Abstract: Amphipathic lytic peptides are ideally suited to use in a ligand/cytotoxin combination to induce sterility or long-term contraception in mammals. The peptides act directly on cell membranes, and need not be internalized. Administering a combination of gonadotropin-releasing hormone (GnRH) (or a GnRH agonist) and a membrane-active lytic peptide produces long-term contraception or sterilization in mammals in vivo. The compounds are relatively small, and are not antigenic. Lysis of gonadotropes has been observed to be very rapid (on the order of ten minutes.) The two components—the ligand and the lytic peptide—may optionally be administered as a fusion peptide, or they may be administered separately, with the ligand administered slightly before the lytic peptide, to activate cells with receptors for the ligand, and thereby make those cells susceptible to lysis by the lytic peptide.
    Type: Grant
    Filed: February 22, 2000
    Date of Patent: January 20, 2004
    Assignee: Board of Supervisors of Louisiana State University and Agricultural and Mechanical College
    Inventors: Frederick M. Enright, Jesse M. Jaynes, William Hansel, Patricia A. Melrose, Philip H. Elzer
  • Patent number: 6635740
    Abstract: Amphipathic lytic peptides are ideally suited to use in a ligand/cytotoxin combination to specifically inhibit cells that are driven by or are dependent upon a specific ligand interaction; for example, to induce sterility or long-term contraception, or to attack tumor cells, or to selectively lyse virally-infected cells, or to attack lymphocytes responsible for autoimmune diseases. The peptides act directly on cell membranes, and need not be internalized. Administering a combination of gonadotropin-releasing hormone (GnRH) (or a GnRH agonist) and a membrane-active lytic peptide produces long-term contraception or sterilization in animals in vivo. Administering in vivo a combination of a ligand and a membrane-active lytic peptide kills cells with a receptor for the ligand. The compounds are relatively small, and are not antigenic. Lysis of gonadotropes has been observed to be very rapid (on the order of ten minutes.) Lysis of tumor cells is rapid.
    Type: Grant
    Filed: September 24, 1999
    Date of Patent: October 21, 2003
    Assignee: Board of Supervisors of Louisiana State University and Agricultural and Mechanical College
    Inventors: Frederick M. Enright, Jesse M. Jaynes, William Hansel, Kenneth L. Koonce, Samuel M. McCann, Wen H. Yu, Patricia A. Melrose, Lane D. Foil, Philip H. Elzer
  • Patent number: 6559281
    Abstract: Non-naturally occurring lytic peptides which contain a phenylalanine residue and one or more alanine, valine and lysine residues, and optionally contain chemically masked cysteine or serine residues possess an amphipathic structure which allows them to promote cell lysis in certain pathologic organisms, and particularly in prokaryotes. Peptides having a beta-pleated sheet secondary structure and lacking cysteine residues form one embodiment of these lytic peptides.
    Type: Grant
    Filed: February 6, 1998
    Date of Patent: May 6, 2003
    Assignee: Demegen, Inc.
    Inventor: Jesse M. Jaynes
  • Patent number: 6514692
    Abstract: The present invention relates to methods for treating immunodeficiency virus infection in an infected animal comprising administering an effective amount of a lytic peptide.
    Type: Grant
    Filed: April 2, 1999
    Date of Patent: February 4, 2003
    Assignee: Demegen, Inc.
    Inventor: Jesse M. Jaynes
  • Publication number: 20020155132
    Abstract: The present invention relates to methods for treating immunodeficiency virus infection in an infected animal comprising administering an effective amount of a lytic peptide
    Type: Application
    Filed: April 2, 1999
    Publication date: October 24, 2002
    Inventor: JESSE M. JAYNES
  • Patent number: 6440935
    Abstract: Inhibition of eucaryotic pathogens and neoplasms and stimulation of lymphocytes and fibroblasts with lytic peptides such as cecropins and sarcotoxins. Eucaryotic cells are contacted with cecropin or sarcotoxin, or a synergistic combination of cecropins or sarcotoxin with lysozyme, in an amount effective to lyse or inhibit the cells. Target cells include eucaryotic microorganisms such as protozoa, e.g. T. cruzi and P. falciparum, mammalian lymphomas and leukemias, and cells infected with intracellular pathogens such as viruses, bacteria and protozoa. Also disclosed is a method for stimulating proliferation of lymphocytes and fibroblasts by contacting such cells with an effective amount of cecropin or sarcotoxin. The methods may be in vitro or in vivo.
    Type: Grant
    Filed: October 4, 1999
    Date of Patent: August 27, 2002
    Assignee: Helix Biomedix, Inc.
    Inventors: Jesse M. Jaynes, Frederic M. Enright, Kenneth L. White