Patents by Inventor Jessica Abraham

Jessica Abraham has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11883846
    Abstract: A method for making ultrasound transducers and ultrasound probes includes providing a piezoelectric layer having a first surface and a second surface, where the second surface is on an opposite side of the piezoelectric layer from the first surface. The method includes fabricating a plurality of conductive through vias extending from the first surface to the second surface of the piezoelectric layer, where fabricating the plurality of conductive through vias comprises cutting a plurality of trenches through the piezoelectric layer and filling each of the plurality of trenches with a conductive material. The method includes cutting the piezoelectric layer into a plurality of transducer units after fabricating the plurality of conductive through vias and cutting each of the transducer units into a plurality of transducer elements.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: January 30, 2024
    Assignee: GE Precision Healthcare LLC
    Inventors: Jason Barrett, Flavien Daloz, Jessica Abraham
  • Publication number: 20200391245
    Abstract: A method for making ultrasound transducers and ultrasound probes includes providing a piezoelectric layer having a first surface and a second surface, where the second surface is on an opposite side of the piezoelectric layer from the first surface. The method includes fabricating a plurality of conductive through vias extending from the first surface to the second surface of the piezoelectric layer, where fabricating the plurality of conductive through vias comprises cutting a plurality of trenches through the piezoelectric layer and filling each of the plurality of trenches with a conductive material. The method includes cutting the piezoelectric layer into a plurality of transducer units after fabricating the plurality of conductive through vias and cutting each of the transducer units into a plurality of transducer elements.
    Type: Application
    Filed: June 14, 2019
    Publication date: December 17, 2020
    Inventors: Jason Barrett, Flavien Daloz, Jessica Abraham
  • Patent number: 9758668
    Abstract: An acoustic stack is described, where the acoustic stack comprises a plurality of acoustic stack components, which are laminated with an accelerated cure adhesive, which comprises an epoxy resin. The epoxy resin comprises one or more modified epoxy resins, which are selected from a group consisting of epoxy phenol novolac, bisphenol A, and bisphenol F. Further described is a method for producing an acoustic stack. The method comprises providing a plurality of acoustic stack components and dispensing an accelerated cure adhesive to the acoustic stack components. The accelerated cure adhesive dispensed on, to, and/or in the acoustic stack components includes an epoxy resin, which comprises at least one modified epoxy resin selected from a group consisting of epoxy phenol novolac, bisphenol A, and bisphenol F. After the accelerated cure adhesive is dispensed to the acoustic stack components, the accelerated cure adhesive is cured.
    Type: Grant
    Filed: July 2, 2015
    Date of Patent: September 12, 2017
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Jessica Abraham, Jessica Subit
  • Publication number: 20170003254
    Abstract: An acoustic stack is described, where the acoustic stack comprises a plurality of acoustic stack components, which are laminated with an accelerated cure adhesive, which comprises an epoxy resin. The epoxy resin comprises one or more modified epoxy resins, which are selected from a group consisting of epoxy phenol novolac, bisphenol A, and bisphenol F. Further described is a method for producing an acoustic stack. The method comprises providing a plurality of acoustic stack components and dispensing an accelerated cure adhesive to the acoustic stack components. The accelerated cure adhesive dispensed on, to, and/or in the acoustic stack components includes an epoxy resin, which comprises at least one modified epoxy resin selected from a group consisting of epoxy phenol novolac, bisphenol A, and bisphenol F. After the accelerated cure adhesive is dispensed to the acoustic stack components, the accelerated cure adhesive is cured.
    Type: Application
    Filed: July 2, 2015
    Publication date: January 5, 2017
    Inventors: Jessica Abraham, Jessica Subit
  • Patent number: 8659212
    Abstract: An ultrasound transducer includes an array of acoustic elements, an integrated circuit, and an interposer. The interposer includes conductive elements that electrically connect the array of acoustic elements to the integrated circuit. An electrically conductive adhesive is engaged with the conductive elements of the interposer to electrically connect the interposer to at least one of the integrated circuit or the array of acoustic elements. The electrically conductive adhesive is anisotropically conductive.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: February 25, 2014
    Assignee: General Electric Company
    Inventors: Trym Eggen, Charles Edward Baumgartner, David A Chartrand, Bjornar Sten-Nilsen, Rolf Johannessen, Jessica Abraham
  • Publication number: 20130214641
    Abstract: An ultrasound transducer includes an array of acoustic elements, an integrated circuit, and an interposer. The interposer includes conductive elements that electrically connect the array of acoustic elements to the integrated circuit. An electrically conductive adhesive is engaged with the conductive elements of the interposer to electrically connect the interposer to at least one of the integrated circuit or the array of acoustic elements. The electrically conductive adhesive is anisotropically conductive.
    Type: Application
    Filed: February 16, 2012
    Publication date: August 22, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Trym Eggen, Charles Edward Baumgartner, David A. Chartrand, Bjornar Sten-Nilsen, Rolf Johannessen, Jessica Abraham