Patents by Inventor Jhimli Mitra

Jhimli Mitra has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11980492
    Abstract: A computer-implemented method includes generating, via a processor, synthetic vessels. The method also includes performing, via the processor, three-dimensional (3D) computational fluid dynamics (CFD) on the synthetic vessels for different flow rates to generate 3D CFD data. The method further includes extracting, via the processor, 3D image patches from the synthetic vessels. The method even further includes obtaining, via the processor, pressure drops across the 3D image patches from the 3D CFD data. The method yet further includes training, via the processor, a deep neural network utilizing the 3D image patches, the pressure drops, and associated flow rates to generate a trained deep neural network.
    Type: Grant
    Filed: November 5, 2021
    Date of Patent: May 14, 2024
    Assignee: GE PRECISION HEALTHCARE LLC
    Inventors: Prem Venugopal, Cynthia Elizabeth Landberg Davis, Jed Douglas Pack, Jhimli Mitra, Soumya Ghose, Peter Michael Edic
  • Patent number: 11948677
    Abstract: Systems and techniques that facilitate hybrid unsupervised and supervised image segmentation are provided. In various embodiments, a system can access a computed tomography (CT) image depicting an anatomical structure. In various aspects, the system can generate, via an unsupervised modeling technique, at least one class probability mask of the anatomical structure based on the CT image. In various instances, the system can generate, via a deep-learning model, an image segmentation based on the CT image and based on the at least one class probability mask.
    Type: Grant
    Filed: June 8, 2021
    Date of Patent: April 2, 2024
    Assignee: GE PRECISION HEALTHCARE LLC
    Inventors: Soumya Ghose, Jhimli Mitra, Peter M Edic, Prem Venugopal, Jed Douglas Pack
  • Publication number: 20230309836
    Abstract: A method for determining a recurrence of a disease in a patient is presented. The method includes generating a plurality of medical images of an organ of the patient and determining a plurality of recurrence probabilities from the plurality of medical images. A recurrence of the disease is determined based on the plurality of recurrence probabilities and clinicopathological data of the patient using a Bayesian network.
    Type: Application
    Filed: November 7, 2022
    Publication date: October 5, 2023
    Applicant: The Trustees of Indiana University
    Inventors: Souyma Ghose, Zhanpan Zhang, Sanghee Cho, Fiona Ginty, Cynthia Elizabeth Landberg Davis, Jhimli Mitra, Sunil S. Badve, Yesim Gokmen-Polar, Elizabeth Mary McDonough
  • Publication number: 20230317293
    Abstract: A method for determining a recurrence of a disease in a patient is presented. The method includes generating a plurality of medical images of an organ of the patient and determining a plurality of recurrence probabilities from the plurality of medical images. A recurrence of the disease is determined based on the plurality of recurrence probabilities and clinicopathological data of the patient using a Bayesian network.
    Type: Application
    Filed: March 31, 2022
    Publication date: October 5, 2023
    Inventors: Sanghee Cho, Zhanpan Zhang, Soumya Ghose, Fiona Ginty, Cynthia Elizabeth Landberg Davis, Jhimli Mitra, Sunil S. Badve, Yesim Gokmen-Polar
  • Publication number: 20230142152
    Abstract: A computer-implemented method includes generating, via a processor, synthetic vessels. The method also includes performing, via the processor, three-dimensional (3D) computational fluid dynamics (CFD) on the synthetic vessels for different flow rates to generate 3D CFD data. The method further includes extracting, via the processor, 3D image patches from the synthetic vessels. The method even further includes obtaining, via the processor, pressure drops across the 3D image patches from the 3D CFD data. The method yet further includes training, via the processor, a deep neural network utilizing the 3D image patches, the pressure drops, and associated flow rates to generate a trained deep neural network.
    Type: Application
    Filed: November 5, 2021
    Publication date: May 11, 2023
    Inventors: Prem Venugopal, Cynthia Elizabeth Landberg Davis, Jed Douglas Pack, Jhimli Mitra, Soumya Ghose, Peter Michael Edic
  • Publication number: 20230144624
    Abstract: A computer-implemented method includes obtaining, via a processor, segmented image patches of a vessel along a coronary tree path and associated coronary flow distribution for respective vessel segments in the segmented image patches. The method also includes determining, via the processor, a pressure drop distribution along an axial length of the vessel from the segmented image patches and the associated coronary flow distribution. The method further includes determining, via the processor, critical points in the pressure drop distribution. The method even further includes detecting, via the processor, a presence of a stenosis based on the critical points in the pressure drop distribution.
    Type: Application
    Filed: November 5, 2021
    Publication date: May 11, 2023
    Inventors: Prem Venugopal, Cynthia Elizabeth Landberg Davis, Jed Douglas Pack, Jhimli Mitra, Soumya Ghose
  • Patent number: 11583188
    Abstract: In accordance with the present disclosure, deep-learning techniques are employed to find anomalies corresponding to bleed events. By way of example, a deep convolutional neural network or combination of such networks may be trained to determine the location of a bleed event, such as an internal bleed event, based on ultrasound data acquired at one or more locations on a patient anatomy. Such a technique may be useful in non-clinical settings.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: February 21, 2023
    Assignee: General Electric Company
    Inventors: Jhimli Mitra, Luca Marinelli, Asha Singanamalli
  • Publication number: 20220392616
    Abstract: Systems and techniques that facilitate hybrid unsupervised and supervised image segmentation are provided. In various embodiments, a system can access a computed tomography (CT) image depicting an anatomical structure. In various aspects, the system can generate, via an unsupervised modeling technique, at least one class probability mask of the anatomical structure based on the CT image. In various instances, the system can generate, via a deep-learning model, an image segmentation based on the CT image and based on the at least one class probability mask.
    Type: Application
    Filed: June 8, 2021
    Publication date: December 8, 2022
    Inventors: Soumya Ghose, Jhimli Mitra, Peter M Edic, Prem Venugopal, Jed Douglas Pack
  • Patent number: 11304683
    Abstract: The subject matter discussed herein relates to multi-modal image alignment to facilitate biopsy procedures and post-biopsy procedures. In one such example, prostate structures (or other suitable anatomic features or structures) are automatically segmented in pre-biopsy MR and pre-biopsy ultrasound images. Thereafter, pre-biopsy MR and pre-biopsy ultrasound contours are aligned. To account for non-linear deformation of the imaged anatomic structure, a patient-specific transformation model is trained via deep learning based at least in part on the pre-biopsy ultrasound images. The pre-biopsy ultrasound images that are overlaid with the pre-biopsy MR contours and based off the deformable transformation model are then aligned with the biopsy ultrasound images. Such real-time alignment using multi-modality imaging techniques provides guidance during the biopsy and post-biopsy system.
    Type: Grant
    Filed: September 13, 2019
    Date of Patent: April 19, 2022
    Assignee: General Electric Company
    Inventors: Jhimli Mitra, Thomas Kwok-Fah Foo, Desmond Teck Beng Yeo, David Martin Mills, Soumya Ghose, Michael John MacDonald
  • Publication number: 20210251611
    Abstract: The present disclosure relates to automatically determining respiratory phases (e.g., end-inspiration/expiration respiratory phases) in real time using ultrasound beamspace data. The respiratory phases may be used subsequently in a therapy or treatment (e.g., image-guided radiation-therapy (IGRT)) for precise dose-delivery. In certain implementations, vessel bifurcation may be tracked and respiration phases determined in real time using the tracked vessel bifurcations to facilitate respiration gating of the treatment or therapy.
    Type: Application
    Filed: February 19, 2020
    Publication date: August 19, 2021
    Inventors: Jhimli Mitra, Sudhanya Chatterjee, Thomas Kwok-Fah Foo, Desmond Teck Beng Yeo, Bryan Patrick Bednarz, Sydney Jupitz
  • Patent number: 10957010
    Abstract: The subject matter discussed herein relates to the automatic, real-time registration of pre-operative magnetic resonance imaging (MRI) data to intra-operative ultrasound (US) data (e.g., reconstructed images or unreconstructed data), such as to facilitate surgical guidance or other interventional procedures. In one such example, brain structures (or other suitable anatomic features or structures) are automatically segmented in pre-operative and intra-operative ultrasound data. Thereafter, anatomic structure (e.g., brain structure) guided registration is applied between pre-operative and intra-operative ultrasound data to account for non-linear deformation of the imaged anatomic structure. MR images that are pre-registered to pre-operative ultrasound images are then given the same nonlinear spatial transformation to align the MR images with intra-operative ultrasound images to provide surgical guidance.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: March 23, 2021
    Assignee: General Electric Company
    Inventors: Soumya Ghose, Jhimli Mitra, David Martin Mills, Lowell Scott Smith, Desmond Teck Beng Yeo, Thomas Kwok-Fah Foo
  • Publication number: 20210077077
    Abstract: The subject matter discussed herein relates to multi-modal image alignment to facilitate biopsy procedures and post-biopsy procedures. In one such example, prostate structures (or other suitable anatomic features or structures) are automatically segmented in pre-biopsy MR and pre-biopsy ultrasound images. Thereafter, pre-biopsy MR and pre-biopsy ultrasound contours are aligned. To account for non-linear deformation of the imaged anatomic structure, a patient-specific transformation model is trained via deep learning based at least in part on the pre-biopsy ultrasound images. The pre-biopsy ultrasound images that are overlaid with the pre-biopsy MR contours and based off the deformable transformation model are then aligned with the biopsy ultrasound images. Such real-time alignment using multi-modality imaging techniques provides guidance during the biopsy and post-biopsy system.
    Type: Application
    Filed: September 13, 2019
    Publication date: March 18, 2021
    Inventors: Jhimli Mitra, Thomas Kwok-Fah Foo, Desmond Teck Beng Yeo, David Martin Mills, Soumya Ghose, Michael John MacDonald
  • Patent number: 10921395
    Abstract: A system and method for providing virtual real-time MRI-guidance for a biopsy outside of a conventional MRI scanner is described. MR images and ultrasound images of a region of a patient's body are simultaneously acquired during a pre-biopsy procedure. Respiratory states that the patient may experience during the biopsy are then determined from the acquired ultrasound images, and each respiratory state is associated with corresponding MR images. The MR images are indexed with their corresponding respiratory state. Ultrasound images are then acquired of the patient during a biopsy procedure. The respiratory state of the patient is determined from the ultrasound images, and the corresponding indexed MR images are displayed.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: February 16, 2021
    Assignee: GE PRECISION HEALTHCARE LLC
    Inventors: Thomas Kwok-Fah Foo, Jhimli Mitra, Bo Wang, Lowell Scott Smith, David Martin Mills, Warren Lee, James Hartman Holmes, Bryan Bednarz, Roberta Marie Strigel
  • Publication number: 20210042878
    Abstract: The subject matter discussed herein relates to the automatic, real-time registration of pre-operative magnetic resonance imaging (MRI) data to intra-operative ultrasound (US) data (e.g., reconstructed images or unreconstructed data), such as to facilitate surgical guidance or other interventional procedures. In one such example, brain structures (or other suitable anatomic features or structures) are automatically segmented in pre-operative and intra-operative ultrasound data. Thereafter, anatomic structure (e.g., brain structure) guided registration is applied between pre-operative and intra-operative ultrasound data to account for non-linear deformation of the imaged anatomic structure. MR images that are pre-registered to pre-operative ultrasound images are then given the same nonlinear spatial transformation to align the MR images with intra-operative ultrasound images to provide surgical guidance.
    Type: Application
    Filed: August 7, 2019
    Publication date: February 11, 2021
    Inventors: Soumya Ghose, Jhimli Mitra, David Martin Mills, Lowell Scott Smith, Desmond Teck Beng Yeo, Thomas Kwok-Fah Foo
  • Patent number: 10842445
    Abstract: A method is provided. The method includes acquiring simultaneously multiple magnetic resonance (MR) images and multiple ultrasound images of an anatomical region of a subject over a scanned duration. The method also includes training an unsupervised deep learning-based deformable registration network. This training includes training a MR registration subnetwork based on the multiple MR images to generate MR deformation and transformation vectors, training an ultrasound registration subnetwork based on the multiple ultrasound images to generate ultrasound deformation and transformation vectors, and training a MR-to-ultrasound subnetwork based the multiple MR images and the multiple ultrasound images to generate MR-to-ultrasound deformation and transformation vectors between corresponding pairs of MR images and ultrasound images at each time point.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: November 24, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Bo Wang, Thomas Kwok-Fah Foo, Desmond Teck Beng Yeo, Jhimli Mitra
  • Publication number: 20200297219
    Abstract: In accordance with the present disclosure, deep-learning techniques are employed to find anomalies corresponding to bleed events. By way of example, a deep convolutional neural network or combination of such networks may be trained to determine the location of a bleed event, such as an internal bleed event, based on ultrasound data acquired at one or more locations on a patient anatomy. Such a technique may be useful in non-clinical settings.
    Type: Application
    Filed: March 18, 2019
    Publication date: September 24, 2020
    Inventors: Jhimli Mitra, Luca Marinelli, Asha Singanamalli
  • Publication number: 20200146635
    Abstract: A method is provided. The method includes acquiring simultaneously multiple magnetic resonance (MR) images and multiple ultrasound images of an anatomical region of a subject over a scanned duration. The method also includes training an unsupervised deep learning-based deformable registration network. This training includes training a MR registration subnetwork based on the multiple MR images to generate MR deformation and transformation vectors, training an ultrasound registration subnetwork based on the multiple ultrasound images to generate ultrasound deformation and transformation vectors, and training a MR-to-ultrasound subnetwork based the multiple MR images and the multiple ultrasound images to generate MR-to-ultrasound deformation and transformation vectors between corresponding pairs of MR images and ultrasound images at each time point.
    Type: Application
    Filed: November 8, 2018
    Publication date: May 14, 2020
    Inventors: Bo Wang, Thomas Kwok-Fah Foo, Desmond Teck Beng Yeo, Jhimli Mitra
  • Patent number: 10614567
    Abstract: Methods and apparatus quantify mass effect deformation in diagnostic images of patients demonstrating glioblastoma multiforme (GBM). One example apparatus includes an image acquisition circuit that acquires an image of a region of tissue demonstrating GBM pathology, a delineation circuit that segments a tumor region from the image, a pre-processing circuit that generates a pre-processed image by pre-processing the segmented image, a registration circuit that registers the pre-processed image with a template image of a healthy brain, a deformation quantification circuit that computes a set of differences between a position of a brain sub-structure represented in the registered image relative to the position of the brain sub-structure represented in the template image. Embodiments may include a classification circuit that classifies the region of tissue as a long or short-term survivor based, at least in part, on the set of differences.
    Type: Grant
    Filed: January 4, 2017
    Date of Patent: April 7, 2020
    Assignee: Case Western Reserve University
    Inventors: Pallavi Tiwari, Anant Madabhushi, Gavin Hanson, Jhimli Mitra
  • Publication number: 20190219647
    Abstract: A system and method for providing virtual real-time MRI-guidance for a biopsy outside of a conventional MRI scanner is described. MR images and ultrasound images of a region of a patient's body are simultaneously acquired during a pre-biopsy procedure. Respiratory states that the patient may experience during the biopsy are then determined from the acquired ultrasound images, and each respiratory state is associated with corresponding MR images. The MR images are indexed with their corresponding respiratory state. Ultrasound images are then acquired of the patient during a biopsy procedure. The respiratory state of the patient is determined from the ultrasound images, and the corresponding indexed MR images are displayed.
    Type: Application
    Filed: January 12, 2018
    Publication date: July 18, 2019
    Inventors: Thomas Kwok-Fah Foo, Jhimli Mitra, Bo Wang, Lowell Scott Smith, David Martin Mills, Warren Lee, James Hartman Holmes, Bryan Bednarz, Roberta Marie Strigel
  • Publication number: 20180025489
    Abstract: Methods and apparatus quantify mass effect deformation in diagnostic images of patients demonstrating glioblastoma multiforme (GBM). One example apparatus includes an image acquisition circuit that acquires an image of a region of tissue demonstrating GBM pathology, a delineation circuit that segments a tumor region from the image, a pre-processing circuit that generates a pre-processed image by pre-processing the segmented image, a registration circuit that registers the pre-processed image with a template image of a healthy brain, a deformation quantification circuit that computes a set of differences between a position of a brain sub-structure represented in the registered image relative to the position of the brain sub-structure represented in the template image. Embodiments may include a classification circuit that classifies the region of tissue as a long or short-term survivor based, at least in part, on the set of differences.
    Type: Application
    Filed: January 4, 2017
    Publication date: January 25, 2018
    Inventors: Pallavi Tiwari, Anant Madabhushi, Gavin Hanson, Jhimli Mitra