Patents by Inventor Jia-Shyong Cheng

Jia-Shyong Cheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8871293
    Abstract: The present disclosure relates to a method for making touch panel. A substrate having a surface is provided. The substrate defines two areas: a touch-view area and a trace area. An adhesive layer is formed on the surface of the substrate. The adhesive layer on the trace area is solidified. A carbon nanotube layer is formed on the adhesive layer. The adhesive layer on the touch-view area is solidified. The carbon nanotube layer on the trace area is removed. At least one electrode and a conductive trace is formed.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: October 28, 2014
    Assignee: Shih Hua Technology Ltd.
    Inventors: Jia-Shyong Cheng, Po-Shan Huang, Po-Sheng Shih, Chun-Yi Hu, Chih-Han Chao, Jeah-Sheng Wu
  • Patent number: 8854334
    Abstract: An exemplary embodiment of touch display device includes a touch panel and a signal processing circuit. The touch panel includes a plurality of touch sensing units, and each touch sensing unit includes a touch sensing element and a coupling sensing element. The signal processing circuit is electrically connected to the touch sensing element and the coupling sensing element. The touch sensing element provides a touch signal to the signal processing circuit, the coupling sensing element provides a coupling signal to the signal processing circuit, and the signal processing circuit processes the touch signal according to the coupling signal to filter an interference signal of the touch signal. A touch display device using the touch panel is also described.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: October 7, 2014
    Assignee: Innolux Corporation
    Inventors: Po-Sheng Shih, Shing-Shiang Chang, Jia-Shyong Cheng
  • Patent number: 8822829
    Abstract: A patterned conductive element includes a substrate having a surface, an adhesive layer located on the surface, and a patterned carbon nanotube layer located on the adhesive layer. Part of the patterned carbon nanotube layer is embedded in the adhesive layer, and the other part of the patterned carbon nanotube layer is exposed from the adhesive layer.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: September 2, 2014
    Assignee: Shih Hua Technology Ltd.
    Inventors: Jia-Shyong Cheng, Po-Shan Huang, Po-Sheng Shih, Chun-Yi Hu, Chih-Han Chao, Jeah-Sheng Wu
  • Publication number: 20140124244
    Abstract: A method for making a conductive film exhibiting electric anisotropy comprises forming a nanomaterial on a substrate, the nanomaterial having a cluster of interconnected nanounits, each of which being substantially transverse to the substrate and having one end bonded to the substrate. The method further includes stretching the nanounits along a first direction to remove the nanomaterial from the substrate so as to form a conductive film having strings of interconnected nanounits, where the nanounits of the strings substantially extend in the first direction. A conductive plate and a method for making the same is also disclosed, where the method further comprises attaching the conductive film to a second substrate.
    Type: Application
    Filed: January 10, 2014
    Publication date: May 8, 2014
    Applicant: INNOLUX CORPORATION
    Inventors: JEAH-SHENG WU, JIA-SHYONG CHENG, CHIH-HAN CHAO
  • Publication number: 20140085708
    Abstract: An electronic paper display device includes an electronic paper display panel, and a functional layer. The electronic paper display panel includes a display surface. The functional layer is located on the display surface and includes a carbon nanotube touching functional layer, an anti-glare layer, and a waterproof layer. The carbon nanotube touching functional layer is located between the anti-glare layer and the electronic paper display panel. The waterproof layer is located between the carbon nanotube touching functional layer and the electronic paper display panel.
    Type: Application
    Filed: December 2, 2013
    Publication date: March 27, 2014
    Applicant: SHIH HUA TECHNOLOGY LTD.
    Inventors: PO-SHENG SHIH, JIA-SHYONG CHENG
  • Patent number: 8646175
    Abstract: A method for making a conductive film exhibiting electric anisotropy comprises forming a nanomaterial on a substrate, the nanomaterial having a cluster of interconnected nanounits, each of which being substantially transverse to the substrate and having one end bonded to the substrate. The method further includes stretching the nanounits along a first direction to remove the nanomaterial from the substrate so as to form a conductive film having strings of interconnected nanounits, where the nanounits of the strings substantially extend in the first direction. A conductive plate and a method for making the same is also disclosed, where the method further comprises attaching the conductive film to a second substrate.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: February 11, 2014
    Assignee: Chimei Innolux Corporation
    Inventors: Jeah-Sheng Wu, Jia-Shyong Cheng, Chih-Han Chao
  • Patent number: 8634127
    Abstract: An electronic paper display device includes an electronic paper display panel, and a functional layer. The electronic paper display panel includes a display surface. The functional layer is located on the display surface and includes a carbon nanotube touching functional layer.
    Type: Grant
    Filed: December 26, 2011
    Date of Patent: January 21, 2014
    Assignee: Shih Hua Technology Ltd.
    Inventors: Po-Sheng Shih, Jia-Shyong Cheng
  • Publication number: 20140009435
    Abstract: A hybrid touch panel includes a capacitive touch panel, an electromagnetic touch panel, and a display. The display is sandwiched between the capacitive touch panel and the electromagnetic touch panel. The capacitive touch panel includes a transparent conductive layer. The transparent conductive layer includes a porous carbon nanotube layer. A transmission rate of the porous carbon nanotube layer to an electromagnetic wave with a frequency from 600 KHz to 2000 MHz is larger than 80%.
    Type: Application
    Filed: December 28, 2012
    Publication date: January 9, 2014
    Applicant: SHIH HUA TECHNOLOGY LTD.
    Inventors: PO-SHENG SHIH, JIA-SHYONG CHENG
  • Publication number: 20140009410
    Abstract: A conductive layer capable of passing through an electromagnetic wave is disclosed in present disclosure. The conductive layer includes a carbon nanotube film including a number of carbon nanotubes. The carbon nanotubes are joined firmly by van der Waals attractive force. The carbon nanotube film further includes a number of micro-gaps between the carbon nanotubes. A transmission rate of the carbon nanotube film to an electromagnetic wave with a frequency from 600 KHz to 2000 MHz is larger than 80%. An electronic device employing the conductive layer is also disclosed.
    Type: Application
    Filed: December 28, 2012
    Publication date: January 9, 2014
    Applicant: Shih Hua Technology Ltd.
    Inventors: PO-SHENG SHIH, JIA-SHYONG CHENG
  • Patent number: 8623224
    Abstract: The present disclosure relates to a method for making pattern conductive element. The method includes steps. A substrate having a surface is provide. An adhesive layer is formed on the surface of the substrate. Part of the adhesive layer is solidified to form a solidified adhesive layer and a non-solidified adhesive layer. A carbon nanotube layer is applied on the adhesive layer. The non-solidified adhesive layer is solidified so that the carbon nanotube layer on the non-solidified adhesive layer forms a fixed carbon nanotube layer and the carbon nanotube layer on the solidified adhesive layer forms a non-fixed carbon nanotube layer. The non-fixed carbon nanotube layer is removed and the fixed carbon nanotube layer is remained to form a pattern carbon nanotube layer.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: January 7, 2014
    Assignee: Shih Hua Technology Ltd.
    Inventors: Jia-Shyong Cheng, Po-Shan Huang, Po-Sheng Shih, Chun-Yi Hu, Chih-Han Chao, Jeah-Sheng Wu
  • Publication number: 20130319832
    Abstract: A touch panel includes a first electrode plate and a second electrode plate. The first electrode plate includes a first substrate and a first conductive layer. The first conductive layer is located on a surface of the first substrate. The first conductive layer is a carbon nanotube layer. The second electrode plate includes a second substrate and a second conductive layer. The second conductive layer is located on a surface of the second substrate. The second conductive layer is opposite to and spaced from the first conductive layer. The second conductive layer is a metal conductive layer.
    Type: Application
    Filed: December 28, 2012
    Publication date: December 5, 2013
    Applicant: SHIH HUA TECHNOLOGY LTD.
    Inventors: CHIH-HAN CHAO, PO-SHENG SHIH, JIA-SHYONG CHENG
  • Publication number: 20130319841
    Abstract: A touch panel includes a first conductive layer, an insulating layer and a second conductive layer. The first conductive layer, the insulating layer, and the second conductive layer are stacked in that order. The first conductive layer includes a carbon nanotube layer. The carbon nanotube layer includes a large number of carbon nanotubes, and the carbon nanotubes are arranged substantially along a first direction. The second conductive layer includes a number of metal strips. The metal strips are spaced from each other. The metal strips are arranged substantially along a second direction, and the first direction and the second direction are intersected.
    Type: Application
    Filed: December 28, 2012
    Publication date: December 5, 2013
    Applicant: SHIH HUA TECHNOLOGY LTD.
    Inventors: CHIH-HAN CHAO, PO-SHENG SHIH, JIA-SHYONG CHENG
  • Patent number: 8599471
    Abstract: An electronic paper display device includes an electronic paper display panel, and a functional layer. The electronic paper display panel includes a common electrode layer and a display surface. The functional layer is located on the display surface and includes a carbon nanotube touching functional layer. A distance between the common electrode layer and the carbon nanotube touching functional layer is above 100 microns and equal to or less than 2 millimeters.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: December 3, 2013
    Assignee: Shih Hua Technology, Ltd.
    Inventors: Po-Sheng Shih, Jia-Shyong Cheng, Po-Yang Chen
  • Patent number: 8454787
    Abstract: A method for making a patterned conductive element includes following steps. A substrate is provided. A patterned adhesive layer is applied on a surface of the substrate. A carbon nanotube layer is placed on a surface of the patterned adhesive layer. The patterned adhesive layer is solidified to obtain a fixed part of the carbon nanotube layer and a non-fixed part of carbon nanotube layer. The non-fixed part of carbon nanotube layer is removed.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: June 4, 2013
    Assignee: Shih Hua Technology Ltd.
    Inventors: Po-Sheng Shih, Jia-Shyong Cheng
  • Patent number: 8411052
    Abstract: A touch panel includes a first electrode plate and a second electrode plate spaced from the first electrode plate. The first electrode plate includes a first substrate, a plurality of first transparent electrodes, and a plurality of first signal wires. The second electrode plate includes a second substrate, a plurality of second transparent electrodes, and a plurality of second signal wires. Both the second transparent electrode and the first transparent electrode include a transparent carbon nanotube structure, the carbon nanotube structure includes of a plurality of metallic carbon nanotubes.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: April 2, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Kai-Li Jiang, Liang Liu, Shou-Shan Fan, Ga-Lane Chen, Jia-Shyong Cheng, Jeah-Sheng Wu
  • Patent number: 8411051
    Abstract: A liquid crystal display screen includes an upper board, a lower board opposite to the upper board, and a liquid crystal layer located between the upper board and the lower board. The upper board includes a touch panel. The touch panel includes a plurality of transparent electrodes. At least one of the transparent electrodes includes a carbon nanotube structure.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: April 2, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Kai-Li Jiang, Liang Liu, Shou-Shan Fan, Ga-Lane Chen, Jia-Shyong Cheng, Jeah-Sheng Wu
  • Publication number: 20130057943
    Abstract: An electronic paper display device includes an electronic paper display panel, and a functional layer. The electronic paper display panel includes a common electrode layer and a display surface. The functional layer is located on the display surface and includes a carbon nanotube touching functional layer. A distance between the common electrode layer and the carbon nanotube touching functional layer is above 100 microns and equal to or less than 2 millimeters.
    Type: Application
    Filed: December 27, 2011
    Publication date: March 7, 2013
    Applicant: Shih Hua Technology Ltd.
    Inventors: PO-SHENG SHIH, JIA-SHYONG CHENG, PO-YANG CHEN
  • Patent number: 8390580
    Abstract: A liquid crystal display screen includes an upper board, a lower board opposite to the upper board, and a liquid crystal layer located between the upper board and the lower board. The upper board includes a touch panel. The touch panel includes an amount of transparent electrodes. At least one of the transparent electrodes includes a transparent carbon nanotube structure. The lower board includes a thin film transistor panel. The thin film transistor panel includes an amount of thin film transistors. Each of the thin film transistors includes a semiconducting layer. The semiconducting layer includes a semiconducting carbon nanotube structure.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: March 5, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Kai-Li Jiang, Liang Liu, Shou-Shan Fan, Ga-Lane Chen, Jia-Shyong Cheng, Jeah-Sheng Wu
  • Publication number: 20130015908
    Abstract: A touch panel includes an insulating substrate, a rectangular transparent conductive layer and a number of electrodes. The insulating substrate has two opposite surfaces. The rectangular transparent conductive layer, fixed on one of the surfaces of the insulating substrate, has two opposite long sides and two opposite short sides. The electrodes are disposed at the short sides of the rectangular transparent conductive layer with a regular interval and electrically connected to the rectangular transparent conductive layer. The rectangular transparent conductive layer further has anisotropic impedance and defines an impedance direction substantially perpendicular to the short sides of the rectangular transparent conductive layer.
    Type: Application
    Filed: July 6, 2012
    Publication date: January 17, 2013
    Applicant: SHIH HUA TECHNOLOGY LTD.
    Inventors: PO-SHENG SHIH, CHIEN-YUNG CHENG, PO-YANG CHEN, JIA-SHYONG CHENG
  • Patent number: 8350727
    Abstract: A touch panel comprises: a first conductive plate including a first substrate having a surface, a first conductive layer disposed on the surface of the first substrate and exhibiting an anisotropic resistivity, and at least one conductive first connecting line, the surface of the first substrate having a peripheral edge, a sensing region covered by the first conductive layer, and a marginal region extending from the sensing region to the peripheral edge, the first connecting line being disposed on the marginal region; and a second conductive plate including a second substrate and a second conductive layer disposed on the second substrate, facing the first conductive layer, and exhibiting anisotropic resistivity. An electronic device including the touch panel is also disclosed.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: January 8, 2013
    Assignee: Chimei Innolux Corporation
    Inventors: Jia-Shyong Cheng, Jeah-Sheng Wu, Chun-Yi Hu, Chih-Han Chao