Patents by Inventor Jia-Zhe Liu

Jia-Zhe Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11923454
    Abstract: An epitaxial structure includes a substrate, a lower super-lattice laminate, a middle super-lattice laminate, an upper super-lattice laminate and a channel layer. The lower super-lattice laminate includes a plurality of first lower film layers and a plurality of second lower film layers stacked alternately. The first lower film layer includes aluminum nitride. The second lower film layer includes aluminum gallium nitride. The middle super-lattice laminate includes a plurality of first middle film layers and a plurality of second middle film layers stacked alternately. The first middle film layer includes aluminum nitride. The second middle film layer includes gallium nitride doped with a doping material. The upper super-lattice laminate includes a plurality of first upper film layers and a plurality of second upper film layers stacked alternately. The first upper film layer includes gallium nitride doped with the doping material. The second upper film layer includes gallium nitride.
    Type: Grant
    Filed: April 23, 2021
    Date of Patent: March 5, 2024
    Assignee: GLOBALWAFERS CO., LTD.
    Inventors: Wei-Jie Sie, Jia-Zhe Liu, Ying-Ru Shih
  • Publication number: 20240063291
    Abstract: A method for epitaxy of a high electron mobility transistor includes: provide a substrate; form a nucleation layer on the substrate; form a buffer layer on the nucleation layer; form a first nitride layer being in contact with the buffer layer on the buffer layer; form a second nitride layer being in contact with the first nitride layer on the first nitride layer, and perform carbon doping on the second nitride layer; form a channel layer on the second nitride layer; and form a barrier layer on the channel layer; a two-dimensional electron gas is formed in the channel layer along an interface between the channel layer and the barrier layer; a growth temperature of the second nitride layer is less than a growth temperature of the first nitride layer; a film thickness of the first nitride layer is less than a film thickness of the second nitride layer.
    Type: Application
    Filed: June 22, 2023
    Publication date: February 22, 2024
    Applicant: GLOBALWAFERS CO., LTD.
    Inventor: JIA-ZHE LIU
  • Publication number: 20240063329
    Abstract: A method of manufacturing a light-emitting element, including: provide a substrate; form a nucleation layer above the substrate; form a buffer layer above the nucleation layer; form a first nitride layer being in contact with the buffer layer above the buffer layer; form a second nitride layer being in contact with the first nitride layer above the first nitride layer; form a first semiconductor layer above the second nitride layer; form a light-emitting layer above the first semiconductor layer; form a second semiconductor layer above the light-emitting layer. The light-emitting layer is adapted to emit light when electrons and holes recombine. A film thickness of the first nitride layer is smaller than a film thickness of the second nitride layer, and a growth pressure of the first nitride layer is smaller than a growth pressure of the second nitride layer.
    Type: Application
    Filed: August 1, 2023
    Publication date: February 22, 2024
    Applicant: GLOBALWAFERS CO., LTD.
    Inventors: JIA-ZHE LIU, CHIH-YUAN CHUANG
  • Publication number: 20240063270
    Abstract: A high electron mobility transistor epitaxial structure includes a substrate, a nucleation layer, a buffer layer, a first nitride layer, a second nitride layer, a channel layer, and a barrier layer. The nucleation layer is located above the substrate. The buffer layer is located above the nucleation layer. The first nitride layer is located above the buffer layer and is in contact with the buffer layer. The second nitride layer is located above the first nitride layer and is in contact with the first nitride layer. A film thickness of the first nitride layer is less than a film thickness of the second nitride layer. The second nitride layer is carbon doped. A carbon concentration of the first nitride layer is less than a carbon concentration of the second nitride layer. The channel layer is located above the second nitride layer.
    Type: Application
    Filed: June 22, 2023
    Publication date: February 22, 2024
    Applicant: GLOBALWAFERS CO., LTD.
    Inventors: JIA-ZHE LIU, HONG-CHE LIN
  • Publication number: 20240063335
    Abstract: A light-emitting element structure includes a substrate, a nucleation layer located above the substrate, a buffer layer located above the nucleation layer, a first nitride layer located above the buffer layer and being in contact with the buffer layer, a second nitride layer located above the first nitride layer and being in contact with the first nitride layer, a first semiconductor layer located above the second nitride layer, a light-emitting layer, and a second semiconductor layer located above the light-emitting layer. A film thickness of the first nitride layer is smaller than a film thickness of the second nitride layer. A dislocation defect density of the second nitride layer is smaller than or equal to 3×109 cm?2. The light-emitting layer is located above the first semiconductor layer and is adapted to emit light when electrons and holes recombine.
    Type: Application
    Filed: August 1, 2023
    Publication date: February 22, 2024
    Applicant: GLOBALWAFERS CO., LTD.
    Inventors: JIA-ZHE LIU, PO-JUNG LIN
  • Publication number: 20230378278
    Abstract: A heterostructure, includes: a substrate; and a buffer layer that includes a plurality of layers having a composition AlxInyGa1-x-yN, where x?1 and 0?y?1; wherein the buffer layer has a first region that includes at least two layers, a second region that includes at least two layers, and a third region that includes at least two layers. The aluminum content varies continuously throughout a thickness of at least one of the layers.
    Type: Application
    Filed: July 14, 2023
    Publication date: November 23, 2023
    Applicant: GlobalWafers Co., Ltd.
    Inventors: Jia-Zhe Liu, Chih-Yuan Chuang, Po Jung Lin, Hong Che Lin
  • Publication number: 20230369447
    Abstract: A method of manufacturing a high electron mobility transistor (HEMT) structure is disclosed. By controlling a passivation layer and a barrier layer to uninterruptedly grow in the same growth chamber, defects of the passivation layer generated in the growth process due to a drastic change in temperature, pressure, or atmosphere or degrading a quality of an interface between the passivation layer and the barrier layer could be avoided, thereby providing the passivation layer with a good quality and the interface between the passivation layer and the barrier layer with a good quality, so that the objective of improving the performance of the HEMT structure could be achieved.
    Type: Application
    Filed: April 3, 2023
    Publication date: November 16, 2023
    Applicant: GLOBALWAFERS CO., LTD.
    Inventors: JIA-ZHE LIU, TZU-YAO LIN
  • Publication number: 20230343588
    Abstract: A semiconductor structure includes a silicon carbide (SiC) substrate, a nucleation layer and a gallium nitride (GaN) layer. The silicon carbide layer has a first thickness T1. The nucleation layer is located on the silicon carbide layer and has a second thickness T2. The nucleation layer is made of AlGaN (AlGaN), and the second thickness T2 fulfills a thickness range of T1*0.002% to T1*0.006%. The gallium nitride layer is located on the nucleation layer and is separated from the silicon carbide substrate.
    Type: Application
    Filed: April 10, 2023
    Publication date: October 26, 2023
    Applicant: GlobalWafers Co., Ltd.
    Inventors: Po Jung Lin, Jia-Zhe Liu
  • Publication number: 20230290872
    Abstract: An improved high electron mobility transistor (HEMT) structure includes a substrate, a nitride nucleation layer, a nitride buffer layer, a nitride channel layer, and a barrier layer. The nitride buffer layer includes a metal dopant. The nitride channel layer has a metal doping concentration less than that of the nitride buffer layer. A two-dimensional electron gas is formed in the nitride channel layer along an interface between the nitride channel layer and the barrier layer. A metal doping concentration X at an interface between the nitride buffer layer and the nitride channel layer is defined as the number of metal atoms per cubic centimeter, and a thickness Y of the nitride channel later is in microns (?m) and satisfies Y?(0.2171)ln(X)?8.34, thereby reducing an influence of the metal dopant to a sheet resistance value of the nitride channel layer and providing the improved HEMT structure having a better performance.
    Type: Application
    Filed: November 17, 2022
    Publication date: September 14, 2023
    Applicant: GLOBALWAFERS CO., LTD.
    Inventors: Po-Jung LIN, Jia-Zhe LIU
  • Publication number: 20230290873
    Abstract: An improved high electron mobility transistor (HEMT) structure includes in order a substrate, a nucleation layer, a buffer layer, a channel layer, and a barrier layer, wherein the buffer layer includes a dopant. The channel layer having a dopant doping concentration less than that of the buffer layer. A two-dimension electron gas is formed in the channel layer along an interface between the channel layer and the barrier layer. A dopant doping concentration of the channel layer at an interface between the channel layer and the barrier layer is equal to or greater than 1×1015 cm?3.
    Type: Application
    Filed: November 17, 2022
    Publication date: September 14, 2023
    Applicant: GLOBALWAFERS CO., LTD.
    Inventors: PO-JUNG LIN, JIA-ZHE LIU
  • Patent number: 11705489
    Abstract: A heterostructure, includes: a substrate; and a buffer layer that includes a plurality of layers having a composition AlxInyGa1-x-yN, where x?1 and y?0; wherein the buffer layer has a first region that includes at least two layers, a second region that includes at least two layers, and a third region that includes at least two layers.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: July 18, 2023
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Jia-Zhe Liu, Yen Lun Huang, Chih-Yuan Chuang, Che Ming Liu, Wen-Ching Hsu, Manhsuan Lin
  • Publication number: 20230215924
    Abstract: A heterostructure, includes: a substrate; and a buffer layer that includes a plurality of layers having a composition AlxInyGa1-x-yN, where x?1 and y?0; wherein the buffer layer has a first region that includes at least two layers, a second region that includes at least two layers, and a third region that includes at least two layers.
    Type: Application
    Filed: March 9, 2023
    Publication date: July 6, 2023
    Applicant: GlobalWafers Co., Ltd.
    Inventors: Jia-Zhe Liu, Yen Lun Huang, Chih-Yuan Chuang, Che Ming Liu, Wen-Ching Hsu, Manhsuan Lin
  • Publication number: 20230138899
    Abstract: A semiconductor epitaxy structure includes a silicon carbide substrate, a nucleation layer, a gallium nitride buffer layer, and a stacked structure. The nucleation layer is formed on the silicon carbide substrate, the gallium nitride buffer layer is disposed on the nucleation layer, and the stacked structure is formed between the nucleation layer and the gallium nitride buffer layer. The stacked structure includes: a plurality of silicon nitride (SiNx) layers and a plurality of aluminum gallium nitride (AlxGa1-xN) layers alternately stacked, wherein the first layer of the plurality of silicon nitride layers is in direct contact with the nucleation layer.
    Type: Application
    Filed: May 30, 2022
    Publication date: May 4, 2023
    Applicant: GlobalWafers Co., Ltd.
    Inventors: Tzu-Yao Lin, Jia-Zhe Liu, Ying-Ru Shih
  • Patent number: 11588015
    Abstract: An epitaxial structure includes a substrate, a nucleation layer on the substrate, a buffer layer on the nucleation layer, and a nitride layer on the buffer layer. The nucleation layer consists of regions in a thickness direction, wherein a chemical composition of the regions is Al(1-x)InxN, where 0?x?1. A maximum value of the x value in the plurality of regions is the same, a minimum value of the x value in the plurality of regions is the same, and an absolute value of a gradient slope of each of the regions is 0.1%/nm to 50%/nm. A thickness of the nucleation layer is less than a thickness of the buffer layer. A roughness of a surface of the nucleation layer in contact with the buffer layer is greater than a roughness of a surface of the buffer layer in contact with the nitride layer.
    Type: Grant
    Filed: March 9, 2022
    Date of Patent: February 21, 2023
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Jia-Zhe Liu, Yen-Lun Huang, Ying-Ru Shih
  • Patent number: 11588014
    Abstract: An epitaxial structure includes a substrate, a nucleation layer on the substrate, a buffer layer on the nucleation layer, and a nitride layer on the buffer layer. The nucleation layer consists of regions in a thickness direction, wherein a chemical composition of the regions is Al(1?x)InxN, where 0?x?1. A maximum value of the x value in the regions decreases along the thickness direction, and the x value in the chemical composition of each two regions consists of a fixed region and a gradient region, wherein a gradient slope of the gradient regions is ?0.1%/nm to ?50%/nm, and a stepwise slope of the fixed regions is ?0.1%/loop to ?50%/loop. A thickness of the nucleation layer is less than that of the buffer layer. A surface roughness of the nucleation layer in contact with the buffer layer is greater than that of the buffer layer in contact with the nitride layer.
    Type: Grant
    Filed: March 9, 2022
    Date of Patent: February 21, 2023
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Jia-Zhe Liu, Yen-Lun Huang, Ying-Ru Shih
  • Patent number: 11532700
    Abstract: An epitaxial structure includes a substrate, a nucleation layer, a buffer layer, and a nitride layer orderly. The nucleation layer consists of regions in a thickness direction, wherein a chemical composition of the regions is Al(1?x)InxN, where 0?x?1. The x value consists of four sections of variation along the thickness direction, in which a first fixed region has a maximum value, a first gradient region gradually changes from the maximum value to a minimum value, a second fixed region has the minimum value, and a second gradient region gradually changes from the minimum value to the maximum value. An absolute value of a gradient slope of the first and second gradient regions is 0.1%/nm to 50%/nm. A surface roughness of the nucleation layer in contact with the buffer layer is greater than that of the buffer layer in contact with the nitride layer.
    Type: Grant
    Filed: March 9, 2022
    Date of Patent: December 20, 2022
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Jia-Zhe Liu, Yen-Lun Huang, Ying-Ru Shih
  • Patent number: 11456362
    Abstract: An epitaxial structure and a semiconductor device are provided in which the epitaxial structure includes at least a SiC substrate, a nucleation layer, and a GaN layer. The nucleation layer is formed on the SiC substrate. The material of the nucleation layer is aluminum gallium nitride doped with a dopant, the Al content in the nucleation layer changes from high to low in the thickness direction, the lattice constant of the nucleation layer is between 3.08 ? and 3.21 ?, and the doping concentration of the nucleation layer changes from high to low in the thickness direction. The GaN layer is formed on the nucleation layer.
    Type: Grant
    Filed: November 19, 2020
    Date of Patent: September 27, 2022
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Jia-Zhe Liu, Tzu-Yao Lin, Ying-Ru Shih
  • Publication number: 20220199762
    Abstract: An epitaxial structure includes a substrate, a nucleation layer, a buffer layer, and a nitride layer orderly. The nucleation layer consists of regions in a thickness direction, wherein a chemical composition of the regions is Al(1?x)InxN, where 0?x?1. The x value consists of four sections of variation along the thickness direction, in which a first fixed region has a maximum value, a first gradient region gradually changes from the maximum value to a minimum value, a second fixed region has the minimum value, and a second gradient region gradually changes from the minimum value to the maximum value. An absolute value of a gradient slope of the first and second gradient regions is 0.1%/nm to 50%/nm. A surface roughness of the nucleation layer in contact with the buffer layer is greater than that of the buffer layer in contact with the nitride layer.
    Type: Application
    Filed: March 9, 2022
    Publication date: June 23, 2022
    Applicant: GlobalWafers Co., Ltd.
    Inventors: Jia-Zhe Liu, Yen-Lun Huang, Ying-Ru Shih
  • Publication number: 20220199761
    Abstract: An epitaxial structure includes a substrate, a nucleation layer on the substrate, a buffer layer on the nucleation layer, and a nitride layer on the buffer layer. The nucleation layer consists of regions in a thickness direction, wherein a chemical composition of the regions is Al(1?X)InXN, where 0?x?1. A maximum value of the x value in the regions decreases along the thickness direction, and the x value in the chemical composition of each two regions consists of a fixed region and a gradient region, wherein a gradient slope of the gradient regions is ?0.1%/nm to ?50%/nm, and a stepwise slope of the fixed regions is ?0.1%/loop to ?50%/loop. A thickness of the nucleation layer is less than that of the buffer layer. A surface roughness of the nucleation layer in contact with the buffer layer is greater than that of the buffer layer in contact with the nitride layer.
    Type: Application
    Filed: March 9, 2022
    Publication date: June 23, 2022
    Applicant: GlobalWafers Co., Ltd.
    Inventors: Jia-Zhe Liu, Yen-Lun Huang, Ying-Ru Shih
  • Publication number: 20220199763
    Abstract: An epitaxial structure includes a substrate, a nucleation layer on the substrate, a buffer layer on the nucleation layer, and a nitride layer on the buffer layer. The nucleation layer consists of regions in a thickness direction, wherein a chemical composition of the regions is Al(1-x)InxN, where 0?x?1. A maximum value of the x value in the plurality of regions is the same, a minimum value of the x value in the plurality of regions is the same, and an absolute value of a gradient slope of each of the regions is 0.1%/nm to 50%/nm. A thickness of the nucleation layer is less than a thickness of the buffer layer. A roughness of a surface of the nucleation layer in contact with the buffer layer is greater than a roughness of a surface of the buffer layer in contact with the nitride layer.
    Type: Application
    Filed: March 9, 2022
    Publication date: June 23, 2022
    Applicant: GlobalWafers Co., Ltd.
    Inventors: Jia-Zhe Liu, Yen-Lun Huang, Ying-Ru Shih