Patents by Inventor Jia Zhen Zheng

Jia Zhen Zheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6747314
    Abstract: A method to form a closely-spaced, vertical NMOS and PMOS transistor pair in an integrated circuit device is achieved. A substrate comprise silicon implanted oxide (SIMOX) wherein an oxide layer is sandwiched between underlying and overlying silicon layers. Ions are selectively implanted into a first part of the overlying silicon layer to form a drain, channel region, and source for an NMOS transistor. The drain is formed directly overlying the oxide layer, the channel region is formed overlying the drain, and the source is formed overlying the channel region. Ions are selectively implanted into a second part of the overlying silicon layer to form a drain, channel region, and source for a PMOS transistor. The drain is formed directly overlying the oxide layer, the PMOS channel region is formed overlying the drain, and the source is formed overlying the channel region. The PMOS transistor drain is in contact with said NMOS transistor drain.
    Type: Grant
    Filed: September 12, 2002
    Date of Patent: June 8, 2004
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Ravi Sundaresan, Yang Pan, James Yong Meng Lee, Ying Keung Leung, Yelehanka Ramachandramurthy, Jia Zhen Zheng, Lap Chan, Elgin Quek
  • Patent number: 6743291
    Abstract: A process of fabricating a CMOS device comprised with super-steep retrograde (SSR), twin well regions, has been developed. The process features the use of two, selective epitaxial growth (SEG), procedures, with the first SEG procedure resulting in the growth of bottom silicon shapes in the PMOS, as well as in the NMOS region of the CMOS device. After implantation of the ions needed for the twin well regions, into the bottom silicon shapes, a second SEG procedure is employed resulting in growth of top silicon shapes on the underlying, implanted bottom silicon shapes. An anneal procedure then distributes the implanted ions resulting in an SSR N well region in the composite silicon shape located in the PMOS region, and resulting in an SSR P well region in the composite silicon shape located in the NMOS region of the CMOS device.
    Type: Grant
    Filed: July 9, 2002
    Date of Patent: June 1, 2004
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Chew Hoe Ang, Wenhe Lin, Jia Zhen Zheng
  • Patent number: 6734082
    Abstract: A process for forming a shallow trench isolation (STI), structure in a semiconductor substrate, featuring a group of insulator liner layers located on the surfaces of the shallow trench shape used to accommodate the STI structure, has been developed. After defining a shallow trench shape featuring rounded corners, a group of thin insulator liner layers, each comprised of either silicon oxide or silicon nitride, is deposited on the exposed surfaces of the shallow trench shape via atomic layer depositing (ALD), procedures. A high density plasma procedure is used for deposition of silicon oxide, filling the shallow trench shape which is lined with the group of thin insulator liner layers. The silicon nitride component of the insulator liner layers, prevents diffusion or segregation of P type dopants from an adjacent P well region to the silicon oxide of the STI structure.
    Type: Grant
    Filed: August 6, 2002
    Date of Patent: May 11, 2004
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Jia Zhen Zheng, Soh Yun Siah, Chew Hoe Ang
  • Publication number: 20040087101
    Abstract: An improved and new process of fabricating high dielectric constant MIM capacitors. These high dielectric constant MIM capacitor met all of the stringent requirements needed for both for both RF and analog circuit applications. For the high dielectric constant MIM capacitor, the metal is comprised of copper electrodes in a dual damascene process. The dielectric constant versus the total thickness of super lattices is controlled by the number of layers either 4/4 , 2/2, and 1/1 artificial layers. Hence thickness of the film can be easily controlled. Enhancement of dielectric constant is because of interface. Dielectric constants near 900 can be easily achieved for 250 Angstrom thick super lattices.
    Type: Application
    Filed: November 2, 2002
    Publication date: May 6, 2004
    Applicant: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Subramanian Balakumar, Chew Hoe Ang, Jia Zhen Zheng, Paul Proctor
  • Patent number: 6716693
    Abstract: An improved new process for fabricating multilevel interconnected vertical channels and horizontal channels or tunnels. The method has broad applications in semiconductors, for copper interconnects and inductors, as well as, in the field of bio-sensors for mini- or micro-columns in gas or liquid separation, gas/liquid chromatography, and in capillary separation techniques. In addition, special techniques are described to deposit by atomic layer deposition, ALD, a copper barrier layer and seed layer for electroless copper plating, filling trench and channel or tunnel openings in a type of damascene process, to form copper interconnects and inductors.
    Type: Grant
    Filed: March 27, 2003
    Date of Patent: April 6, 2004
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Lap Chan, Sanford Chu, Chit Hwei Ng, Yelehanka Ramachandramurthy Pradeep, Jia Zhen Zheng
  • Publication number: 20040063264
    Abstract: A method of fabricating a CMOS device with reduced processing costs as a result of a reduction in photolithographic masking procedures, has been developed. The method features formation of L shaped silicon oxide spacers on the sides of gate structures, with a vertical spacer component located on the sides of the gate structure, and with horizontal spacer components located on the surface of the semiconductor substrate with a thick horizontal spacer component located adjacent to the gate structures, while a thinner horizontal spacer component is located adjacent to the thicker horizontal spacer component.
    Type: Application
    Filed: October 1, 2002
    Publication date: April 1, 2004
    Applicant: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Jia Zhen Zheng, Soh Yun Siah, Liang Choo Hsia, Eng Hua Lim, Simon Chooi, Chew Hoe Ang
  • Patent number: 6709934
    Abstract: A method for forming a gate dielectric having regions with different dielectric constants. A low-K dielectric layer is formed over a semiconductor structure. A dummy dielectric layer is formed over the low-K dielectric layer. The dummy dielectric layer and low-K dielectric layer are patterned to form an opening. The dummy dielectric layer is isontropically etched selectively to the low-K dielectric layer to form a stepped gate opening. A high-K dielectric layer is formed over the dummy dielectric and in the stepped gate opening. A gate electrode is formed on the high-K dielectric layer.
    Type: Grant
    Filed: July 16, 2002
    Date of Patent: March 23, 2004
    Assignee: Chartered Semiconductor Manufacturing Ltd
    Inventors: James Yong Meng Lee, Ying Keung Leung, Yelehanka Ramachandramurthy Pradeep, Jia Zhen Zheng, Lap Chan, Elgin Quek, Ravi Sundaresan, Yang Pan
  • Patent number: 6709912
    Abstract: A method for forming a dual Si—Ge poly-gates having different Ge concentrations is described. An NMOS active area and a PMOS active area are provided on a semiconductor substrate separated by an isolation region. A gate oxide layer is grown overlying the semiconductor substrate in each of the active areas. A polycrystalline silicon-germanium (Si—Ge) layer is deposited overlying the gate oxide layer wherein the polycrystalline Si—Ge layer has a first Ge concentration. The NMOS active area is blocked while the PMOS active area is exposed. Successive cycles of Ge plasma doping and laser annealing into the PMOS active area are performed to achieve a second Ge concentration higher than the first Ge concentration.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: March 23, 2004
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Chew-Hoe Ang, Jeffrey Chee Wei-Lun, Wenhe Lin, Jia Zhen Zheng
  • Publication number: 20040038542
    Abstract: A first method of reducing semiconductor device substrate effects comprising the following steps. O+ or O2+ are selectively implanted into a silicon substrate to form a silicon-damaged silicon oxide region. One or more devices are formed over the silicon substrate proximate the silicon-damaged silicon oxide region within at least one upper dielectric layer. A passivation layer is formed over the at least one upper dielectric layer. The passivation layer and the at least one upper dielectric layer are patterned to form a trench exposing a portion of the silicon substrate over the silicon-damaged silicon oxide region. The silicon-damaged silicon oxide region is selectively etched to form a channel continuous and contiguous with the trench whereby the channel reduces the substrate effects of the one or more semiconductor devices.
    Type: Application
    Filed: August 22, 2002
    Publication date: February 26, 2004
    Applicant: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Lap Chan, Sanford Chu, Chit Hwei Ng, Purakh Verma, Jia Zhen Zheng, Johnny Chew, Choon Beng Sia
  • Publication number: 20040033668
    Abstract: A method for forming a transistor having an elevated source/drain structure is described. A gate electrode is formed overlying a substrate and isolated from the substrate by a gate dielectric layer. Isolation regions are formed in and on the substrate wherein the isolation regions have a stepped profile wherein an upper portion of the isolation regions partly overlaps and is offset from a lower portion of the isolation regions in the direction away from the gate electrode. Ions are implanted into the substrate between the gate electrode and the isolation regions to form source/drain extensions. Dielectric spacers are formed on sidewalls of the gate electrode and the isolation regions.
    Type: Application
    Filed: August 16, 2002
    Publication date: February 19, 2004
    Applicant: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Randall Cher Liang Cha, Yeow Kheng Lim, Alex Kai Hung See, Jia Zhen Zheng
  • Publication number: 20040029321
    Abstract: A method of forming a dielectric layer on a semiconductor substrate, comprised with multiple dielectric constants and multiple equivalent oxide thicknesses (EOT), has been developed. After formation of a high dielectric constant (high k), layer, on a semiconductor substrate, a first region of the high k layer is subjected to a process directed at incorporating elements into a top portion of the high k layer, while a second region of the high k layer remains protected during this procedure. An anneal treatment results in the processed high k layer now exhibiting a different dielectric constant, as well as a different EOT, than the unprocessed, second region of the high k layer, not exposed to the above procedures.
    Type: Application
    Filed: August 7, 2002
    Publication date: February 12, 2004
    Applicant: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Chew Hoe Ang, Liang Choo Hsia, Jia Zhen Zheng, Soh Yun Siah, Simon Chooi
  • Publication number: 20040029353
    Abstract: A process for forming a shallow trench isolation (STI), structure in a semiconductor substrate, featuring a group of insulator liner layers located on the surfaces of the shallow trench shape used to accommodate the STI structure, has been developed. After defining a shallow trench shape featuring rounded corners, a group of thin insulator liner layers, each comprised of either silicon oxide or silicon nitride, is deposited on the exposed surfaces of the shallow trench shape via atomic layer depositing (ALD), procedures. A high density plasma procedure is used for deposition of silicon oxide, filling the shallow trench shape which is lined with the group of thin insulator liner layers. The silicon nitride component of the insulator liner layers, prevents diffusion or segregation of P type dopants from an adjacent P well region to the silicon oxide of the STI structure.
    Type: Application
    Filed: August 6, 2002
    Publication date: February 12, 2004
    Applicant: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Jia Zhen Zheng, Soh Yun Siah, Chew Hoe Ang
  • Publication number: 20040023506
    Abstract: In accordance with the objectives of the invention a new method is provided for the creation of layers of gate oxide having an unequal thickness. Active surface regions are defined over the surface of a substrate, a thick layer of gate oxide is grown over the active surface. A selective etch is applied to the thick layer of gate oxide, selectively reducing the thickness of the thick layer of gate oxide to the required thickness of a thin layer of gate oxide. The layer of thick gate oxide is blocked from exposure. N2 atoms are implanted into the exposed surface of the thin layer of oxide, rapid thermal processing is performed and the blocking mask is removed from the surface of the thick layer of gate oxide. A high concentration of nitride has now been provided in the thin layer of gate oxide.
    Type: Application
    Filed: July 30, 2002
    Publication date: February 5, 2004
    Applicant: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Yelehanka Ramachandramurthy Pradeep, Sanford Chu, Chit Hwei Ng, Jia Zhen Zheng, Purakh Verma
  • Publication number: 20040007170
    Abstract: A process of fabricating a CMOS device comprised with super-steep retrograde (SSR), twin well regions, has been developed. The process features the use of two, selective epitaxial growth (SEG), procedures, with the first SEG procedure resulting in the growth of bottom silicon shapes in the PMOS, as well as in the NMOS region of the CMOS device. After implantation of the ions needed for the twin well regions, into the bottom silicon shapes, a second SEG procedure is employed resulting in growth of top silicon shapes on the underlying, implanted bottom silicon shapes. An anneal procedure then distributes the implanted ions resulting in an SSR N well region in the composite silicon shape located in the PMOS region, and resulting in an SSR P well region in the composite silicon shape located in the NMOS region of the CMOS device.
    Type: Application
    Filed: July 9, 2002
    Publication date: January 15, 2004
    Applicant: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Chew Hoe Ang, Wenhe Lin, Jia Zhen Zheng
  • Publication number: 20040005781
    Abstract: A new method of forming shallow trench isolations is described. An isolation trench is etched into a substrate. A silicon-rich oxide liner layer is deposited overlying the substrate and within the isolation trench using a high density plasma chemical vapor deposition process (HDP-CVD). Then, an oxide layer is deposited by HDP-CVD overlying the silicon-rich oxide liner layer and filling the trench to complete fabrication of said shallow trench isolation region in the manufacture of the integrated circuit device. The silicon-rich oxide liner layer is of high quality and has a high wet etch rate thereby minimizing divots formed during cleaning steps.
    Type: Application
    Filed: July 2, 2002
    Publication date: January 8, 2004
    Applicant: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Liu Huang, Han Sang Hyun, John Sudijono, Jia Zhen Zheng, Alan Cuthbertson
  • Publication number: 20040004054
    Abstract: A new method of provided for forming in one plane layers of semiconductor material having both high and low dielectric constants. Layers, having selected and preferably non-identical parameters of dielectric constants, are successively deposited interspersed with layers of etch stop material. The layers can be etched, creating openings there-through that can be filled with a a layer of choice.
    Type: Application
    Filed: July 5, 2002
    Publication date: January 8, 2004
    Applicant: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Yelehanka Ramachandramurthy Pradeep, Sanford Chu, Chit Hwei Ng, Jia Zhen Zheng, Purakh Verma
  • Patent number: 6670248
    Abstract: A method for forming, on a semiconductor substrate, a dielectric layer having a variable thickness and composition. The dielectric layer so formed can be used to form electronic devices such as MOSFETS and CMOSFETS that require gate dielectrics of different thicknesses. On a silicon substrate in accord with the preferred embodiment, the method requires the formation of three regions, two with SiO2 layers of different thicknesses and a third region of substrate with no oxide. A final thin layer of high-k dielectric is formed covering the three regions, so that the region with no oxide has the thinnest dielectric layer of only high-k material and the other two regions have the high-k dielectric over SiO2 layers of different thickness. A final layer of gate electrode material can be formed and patterned to form the required device structure.
    Type: Grant
    Filed: August 7, 2002
    Date of Patent: December 30, 2003
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Chew Hoe Ang, Wenhe Lin, Jia Zhen Zheng
  • Patent number: 6664153
    Abstract: A method for forming a single gate having a dual work-function is described. A gate electrode is formed overlying a gate dielectric layer on a substrate. Sidewalls of the gate electrode are selectively doped whereby the doped sidewalls have a first work-function and whereby a central portion of the gate electrode not doped has a second work-function to complete formation of a single gate having multiple work-functions in the fabrication of integrated circuits.
    Type: Grant
    Filed: February 8, 2002
    Date of Patent: December 16, 2003
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Chew Hoe Ang, Eng Hua Lim, Randall Cher Liang Cha, Jia Zhen Zheng, Elgin Quek, Mei Sheng Zhou, Daniel Yen
  • Patent number: 6664156
    Abstract: A method of fabrication of L-shaped spacers in a semiconductor device. A gate structure is provided over a substrate. We form a first dielectric layer over the gate dielectric layer and the substrate. Next, a second dielectric layer is formed over the first dielectric layer. Then, we form a third dielectric layer over the second dielectric layer. The third dielectric layer is anisotropically etched to form a disposable spacer on the second dielectric layer. The second dielectric layer and the first dielectric layer are anisotropically etched using the disposable spacer as a mask to form a top and a bottom L-shaped spacer. The disposable spacer is removed. In preferred embodiments, the first, second and third dielectric layers are formed by atomic layer deposition (ALD) or ALCVD processes.
    Type: Grant
    Filed: July 31, 2002
    Date of Patent: December 16, 2003
    Assignee: Chartered Semiconductor Manufacturing, LTD
    Inventors: Chew Hoe Ang, Eng Hua Lim, Wenhe Lin, Jia Zhen Zheng
  • Patent number: 6632712
    Abstract: A process for fabricating vertical CMOS devices, featuring variable channel lengths, has been developed. Channel region openings are defined in composite insulator stacks, with the channel length of specific devices determined by the thickness of the composite insulator stack. Selective removal of specific components of the composite insulator stack, in a specific region, allows the depth of the channel openings to be varied. A subsequent epitaxial silicon growth procedure fills the variable depth channel openings, providing the variable length, channel regions for the vertical CMOS devices.
    Type: Grant
    Filed: October 3, 2002
    Date of Patent: October 14, 2003
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Chew-Hoe Ang, Eng Hua Lim, Randall Cha, Jia Zhen Zheng, Elgin Quek, Mei Sheng Zhou, Daniel Yen