Patents by Inventor Jianbo Di

Jianbo Di has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8802749
    Abstract: Described herein, in the preferred embodiment, is a leonardite-based polyurethane resin binder that may be used, among other applications, as a binder in combination with foundry aggregate, e.g., sand, for molding or casting metal parts. The binders described herein comprise a humic substance, preferably leonardite, combined with a polymerizable polyol, an isocyanate, and a polymerization catalyst to make a polyurethane resin binder in situ in a foundry aggregate, such as sand. The lignite is mixed with the polymerizable polyol and dispersing agents as additives to improve the suspension quality and binder performance of the lignite-containing part of the binder components.
    Type: Grant
    Filed: April 22, 2013
    Date of Patent: August 12, 2014
    Assignee: Amcol International Corporation
    Inventors: Jianbo Di, Joseph M. Fuqua
  • Patent number: 8623959
    Abstract: Described herein a method of manufacturing a metal shape that includes contacting a liquid metal and a surface of a foundry core under conditions wherein vein defects occur, the surface of the foundry core comprising a foundry aggregate, a combustible-organic material and a polyurethane resin, and the surface of the foundry core being free of or essentially free of an anti-veining agent; cooling the liquid metal to a temperature below its melting point thereby forming a metal shape; and then removing the foundry core from the metal shape.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: January 7, 2014
    Inventors: Joseph M. Fuqua, Jianbo Di
  • Publication number: 20130237635
    Abstract: Described herein, in the preferred embodiment, is a leonardite-based polyurethane resin binder that may be used, among other applications, as a binder in combination with foundry aggregate, e.g., sand, for molding or casting metal parts. The binders described herein comprise a humic substance, preferably leonardite, combined with a polymerizable polyol, an isocyanate, and a polymerization catalyst to make a polyurethane resin binder in situ in a foundry aggregate, such as sand. The lignite is mixed with the polymerizable polyol and dispersing agents as additives to improve the suspension quality and binder performance of the lignite-containing part of the binder components.
    Type: Application
    Filed: April 22, 2013
    Publication date: September 12, 2013
    Applicant: AMCOL INTERNATIONAL CORPORATION
    Inventors: Jianbo Di, Joseph M. Fuqua
  • Patent number: 8436073
    Abstract: Described herein, in the preferred embodiment, is a leonardite-based polyurethane resin binder that may be used, among other applications, as a binder in combination with foundry aggregate, e.g., sand, for molding or casting metal parts. The binders described herein comprise a humic substance, preferably leonardite, combined with a polymerizable polyol, an isocyanate, and a polymerization catalyst to make a polyurethane resin binder in situ in a foundry aggregate, such as sand. The lignite is mixed with the polymerizable polyol and dispersing agents as additives to improve the suspension quality and binder performance of the lignite-containing part of the binder components.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: May 7, 2013
    Assignee: Amcol International
    Inventors: Jianbo Di, Joseph M. Fuqua
  • Publication number: 20110277952
    Abstract: Described herein, in the preferred embodiment, is a leonardite-based polyurethane resin binder that may be used, among other applications, as a binder in combination with foundry aggregate, e.g., sand, for molding or casting metal parts. The binders described herein comprise a humic substance, preferably leonardite, combined with a polymerizable polyol, an isocyanate, and a polymerization catalyst to make a polyurethane resin binder in situ in a foundry aggregate, such as sand. The lignite is mixed with the polymerizable polyol and dispersing agents as additives to improve the suspension quality and binder performance of the lignite-containing part of the binder components.
    Type: Application
    Filed: July 22, 2011
    Publication date: November 17, 2011
    Applicant: AMCOL INTERNATIONAL
    Inventors: Jianbo Di, Joseph M. Fuqua
  • Publication number: 20110220316
    Abstract: Described herein a method of manufacturing a metal shape that includes contacting a liquid metal and a surface of a foundry core under conditions wherein vein defects occur, the surface of the foundry core comprising a foundry aggregate, a combustible-organic material and a polyurethane resin, and the surface of the foundry core being free of or essentially free of an anti-veining agent; cooling the liquid metal to a temperature below its melting point thereby forming a metal shape; and then removing the foundry core from the metal shape.
    Type: Application
    Filed: May 23, 2011
    Publication date: September 15, 2011
    Applicant: AMCOL INTERNATIONAL CORPORATION
    Inventors: Joseph M. Fuqua, Jianbo Di
  • Patent number: 7902321
    Abstract: Silicate anchored multifunctional initiator has moiety initiating ring opening living polymerization of lactone or ethylene oxide or cyclic siloxane monomer and other moiety for initiating living free radical polymerization of ethylenically unsaturated monomer. The monomers are reacted with the initiator in a one-pot, one-step reaction to cause living polymerization of both monomers and exfoliation of silicate layers to provide dispersed block copolymer silicate nanocomposite, with the junction of the two blocks being anchored to silicate layer and each block dangling therefrom.
    Type: Grant
    Filed: November 9, 2005
    Date of Patent: March 8, 2011
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Dotsevi Y. Sogah, Jianbo Di
  • Patent number: 7790292
    Abstract: A polysiloxane copolymer composition comprises: a polysiloxane unit comprising 4 to 50 siloxane units, and a polyester-polycarbonate unit consisting of 50 to 100 mole percent of arylate ester units, less than 50 mole percent aromatic carbonate units, less than 30 mole percent resorcinol carbonate units, and less than 35 mole percent bisphenol carbonate units, wherein the siloxane units are present in the polysiloxane unit in an amount of 0.2 to 10 wt % of the total weight of the polysiloxane copolymer composition, and wherein the polysiloxane copolymer composition has a 2 minute integrated heat release rate of less than or equal to 65 kilowatt-minutes per square meter (kW-min/m2) and a peak heat release rate of less than 65 kilowatts per square meter (kW/m2) as measured using the method of FAR F25.4, in accordance with Federal Aviation Regulation FAR 25.853 (d). A window article for an aircraft, comprising the polysiloxane copolymer composition, is also disclosed.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: September 7, 2010
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventors: Robert Edgar Colborn, Gary C. Davis, Jianbo Di, Constantin Donea, Irene Dris, Katherine Lee Jackson, Brian D. Mullen, Laura G. Schultz, Moitreyee Sinha, Paul D. Sybert
  • Publication number: 20100189509
    Abstract: The apparatuses, compositions and methods described herein generally relate to a new application for and formulation of composite-polymer composition. This composition is a nanocomposite, comprising a polymer and a clay, preferably a recycled polymer and a nanoclay. The nanocomposite composition has improved performance characteristics, such as lower creep values and lower coefficients of linear thermal expansion, and can reduce the dependency of plastic product manufacturing on virgin (unrecycled) polymers. Moreover, the nanocomposite is formed into geosynthetic materials, e.g., geomembranes, and storm water retention/detention systems.
    Type: Application
    Filed: January 21, 2010
    Publication date: July 29, 2010
    Applicant: AMCOL INTERNATIONAL CORPORATION
    Inventors: Archibald S. Filshill, Jianbo Di, Jason M. Logsdon, Michael Donovan
  • Patent number: 7659321
    Abstract: Photoinitiator modified silicate and ethylenically unsaturated monomer are reacted in solvent to cause living polymerization of monomer and exfoliation of silicate layers and cause attachment of silicate layers to polymer chains, thereby providing dispersed homopolymer or block copolymer silicate nanocomposites.
    Type: Grant
    Filed: November 9, 2005
    Date of Patent: February 9, 2010
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Dotsevi Y. Sogah, Jianbo Di, Xiao-Ping Chen
  • Patent number: 7498398
    Abstract: A polyacrylate-polycarbonate copolymer comprises a polycarbonate block comprising aromatic carbonate units, and a polyacrylate block derived from a difunctional polyacrylate polymer having the formula Z1-(M)x-Z2 wherein M is an acrylate block unit comprising a reaction residue of a (meth)acrylate monomer, a non-(meth)acrylate monomer, or a combination comprising a (meth)acrylate and a non-(meth)acrylate monomer, at least one acrylate block unit is a (meth)acrylate monomer; x is greater than one; and Z1 and Z2 are each independently functionalized terminal groups of the formula -(A3)y-B, wherein B is a reactive group comprising a hydroxy or non-hydroxy group, A3 an aliphatic group, an aromatic group, or an aliphatic-aromatic group, y is 0 or 1, A3 is free of hydrogen atoms beta to B when B is a hydroxy group, and B and A3 are each free of sulfur atoms. A method of making, a thermoplastic composition, and articles are also disclosed.
    Type: Grant
    Filed: March 21, 2006
    Date of Patent: March 3, 2009
    Assignee: SABIC Innovative Plastics IP B.V.
    Inventors: Jianbo Di, Brian Mullen, Paul Dean Sybert
  • Publication number: 20090030174
    Abstract: Silicate anchored multifunctional initiator has moiety initiating ring opening living polymerization of lactone or ethylene oxide or cyclic siloxane monomer and other moiety for initiating living free radical polymerization of ethylenically unsaturated monomer. The monomers are reacted with the initiator in a one-pot, one-step reaction to cause living polymerization of both monomers and exfoliation of silicate layers to provide dispersed block copolymer silicate nanocomposite, with the junction of the two blocks being anchored to silicate layer and each block dangling therefrom.
    Type: Application
    Filed: November 9, 2005
    Publication date: January 29, 2009
    Applicant: Cornell Research Foundation, Inc.
    Inventors: Dotsevi Y Sogah, Jianbo Di
  • Publication number: 20090018229
    Abstract: Nanocomposites of silicate layers or inorganic nanoparticles dispersed in a polymer or copolymer matrix are prepared by solution blending or melt blending the polymer or copolymer with nanoadditive containing from 20 to 50 weight percent silicate layers or inorganic nanoparticles dispersed in a different polymer or copolymer of Mn ranging form 10,000 to 40,000.
    Type: Application
    Filed: November 9, 2005
    Publication date: January 15, 2009
    Inventors: Dotsevi Y. Sogah, Jianbo Di, Xiao-Ping Chen
  • Publication number: 20090012199
    Abstract: Photoinitiator modified silicate and ethylenically unsaturated monomer are reacted in solvent to cause living polymerization of monomer and exfoliation of silicate layers and cause attachment of silicate layers to polymer chains, thereby providing dispersed homopolymer or block copolymer silicate nanocomposites.
    Type: Application
    Filed: November 9, 2005
    Publication date: January 8, 2009
    Inventors: Dotsevi Y. Sogah, Jianbo Di, Xiao-Ping Chen
  • Publication number: 20080113117
    Abstract: Disclosed herein are light diffusing films, methods of making the same and articles using the same. In one embodiment, a method of making a light-diffusing film comprises: mixing about 90 wt. % to about 99.999 wt. % of a powdered polycarbonate and about 0.001 wt. % to about 3 wt. % light-diffusing particles to form a mixture, wherein weight percents are based on a total weight of the light-diffusing film; melting the mixture to form a melt; and extruding the melt in the form of a sheet to form the light-diffusing film. The light-diffusing film comprises a hiding power of about 0 to 0.
    Type: Application
    Filed: November 7, 2007
    Publication date: May 15, 2008
    Inventors: Christopher A. Coenjarts, Jianbo Di, John Graf, Emine Elif Gurel, David L. Hartter, Grant Hay, Todd M. Loehr, Philip M. Peters, Joseph A. Riello, Shixiong Zhu
  • Publication number: 20080081892
    Abstract: A thermoplastic composition comprises a polycarbonate having repeating structural carbonate units of the formula (1): wherein at least 60 percent of the total number of R1 groups contain aromatic organic groups and the balance thereof are aliphatic, alicyclic, or aromatic groups; and wherein the polycarbonate comprises terminal groups derived from reaction with a cyanophenol of the formula wherein Y is a halogen, C1-3 alkyl group, C1-3 alkoxy group, C7-12 arylalkyl, C7-12 alkylaryl, or nitro group, y is 0 to 4, and c is 1 to 5, provided that y+c is 1 to 5; and a flame retardant. The compositions are useful in the manufacture of a wide variety of parts, particularly those having a thin wall.
    Type: Application
    Filed: September 29, 2006
    Publication date: April 3, 2008
    Applicant: General Electric Company
    Inventors: Jianbo Di, Brian D. Mullen, Paul D. Sybert
  • Patent number: 7326764
    Abstract: A reaction product comprises a first polyester-polycarbonate comprising a polyester unit and a polycarbonate unit, a second polyester-polycarbonate comprising a polyester unit and a polycarbonate unit, and a transesterification catalyst. The reaction product has a haze of less than 1.7%, specifically less than 1.0% as measured at a thickness of 3.2 mm according to ASTM D1003-00. A thermoplastic composition comprising the reaction product and articles formed from therefrom are disclosed. A method of forming the reaction product is also disclosed.
    Type: Grant
    Filed: October 31, 2005
    Date of Patent: February 5, 2008
    Assignee: General Electric Company
    Inventors: Jianbo Di, Brian D. Mullen, Paul D. Sybert
  • Patent number: 7297380
    Abstract: A light-diffusing film comprises about 90 wt. % to about 99.999 wt. % polycarbonate, wherein the polycarbonate comprises a yellowness index of about 0.8 to about 1.5 as measured in accordance with ASTM E313-73 (D1925); about 0.001 wt. % to about 3 wt. % light-diffusing particles; wherein weight percents are based on a total weight of the light-diffusing film; and wherein the light-diffusing film comprises a light transmission of about 45% to about 65% as measured in accordance with ASTM D1003-00, and a hiding power of 0 to about 0.5.
    Type: Grant
    Filed: May 20, 2005
    Date of Patent: November 20, 2007
    Assignee: General Electric Company
    Inventors: Christopher A. Coenjarts, Jianbo Di, John Graf, Emine Elif Gurel, David L. Hartter, Grant Hay, Todd M. Loehr, Philip M. Peters, Joseph A. Riello, Jr., Shixiong Zhu
  • Publication number: 20070225470
    Abstract: A polyacrylate-polycarbonate copolymer comprises a polycarbonate block comprising aromatic carbonate units, and a polyacrylate block derived from a difinctional polyacrylate polymer having the formula Z1-(M)x-Z2 wherein M is an acrylate block unit comprising a reaction residue of a (meth)acrylate monomer, a non-(meth)acrylate monomer, or a combination comprising a (meth)acrylate and a non-(meth)acrylate monomer, at least one acrylate block unit is a (meth)acrylate monomer; x is greater than one; and Z1 and Z2 are each independently functionalized terminal groups of the formula -(A3)y-B, wherein B is a reactive group comprising a hydroxy or non-hydroxy group, A3 an aliphatic group, an aromatic group, or an aliphatic-aromatic group, y is 0 or 1, A3 is free of hydrogen atoms beta to B when B is a hydroxy group, and B and A3 are each free of sulfur atoms. A method of making, a thermoplastic composition, and articles are also disclosed.
    Type: Application
    Filed: March 21, 2006
    Publication date: September 27, 2007
    Inventors: Jianbo Di, Brian Mullen, Paul Sybert
  • Publication number: 20070129492
    Abstract: A polysiloxane copolymer composition comprises: a polysiloxane unit comprising 4 to 50 siloxane units, and a polyester-polycarbonate unit consisting of 50 to 100 mole percent of arylate ester units, less than 50 mole percent aromatic carbonate units, less than 30 mole percent resorcinol carbonate units, and less than 35 mole percent bisphenol carbonate units, wherein the siloxane units are present in the polysiloxane unit in an amount of 0.2 to 10 wt % of the total weight of the polysiloxane copolymer composition, and wherein the polysiloxane copolymer composition has a 2 minute integrated heat release rate of less than or equal to 65 kilowatt-minutes per square meter (kW-min/m2) and a peak heat release rate of less than 65 kilowatts per square meter (kW/m2) as measured using the method of FAR F25.4, in accordance with Federal Aviation Regulation FAR 25.853 (d). A window article for an aircraft, comprising the polysiloxane copolymer composition, is also disclosed.
    Type: Application
    Filed: September 29, 2006
    Publication date: June 7, 2007
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Robert Colborn, Gary Davis, Jianbo Di, Constantin Donea, Irene Dris, Katherine Jackson, Brian Mullen, Laura Schultz, Moitreyee Sinha, Paul Sybert