Patents by Inventor Jianghu CUI

Jianghu CUI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10899631
    Abstract: A ferrous modified selenium sol for inhibiting accumulation of cadmium and arsenic in rice and the preparation method and application thereof are disclosed. The method includes: dissolving an iron-containing compound and a selenium-containing compound into water; adding a reductant to the solution, and stirring until no more precipitation is generated, then adding carbonate, continuing to stir until no more precipitation is generated, and then filtering, taking the precipitation, and washing to obtain the precipitation of the selenium element and ferrous carbonate; adding an emulsifier to a citric acid buffer solution to obtain an emulsified citric acid buffer solution; adding the precipitation of the selenium element and ferrous carbonate to the emulsified citric acid buffer solution to obtain a sol system; and evaporating to concentrate the sol system, and adjusting the pH to 4.5-8.5 to obtain a ferrous modified selenium sol for inhibiting the accumulation of cadmium and arsenic in rice.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: January 26, 2021
    Inventors: Fangbai Li, Chuanping Liu, Jianghu Cui
  • Publication number: 20200325037
    Abstract: A ferrous modified selenium sol for inhibiting accumulation of cadmium and arsenic in rice and the preparation method and application thereof are disclosed. The method includes: dissolving an iron-containing compound and a selenium-containing compound into water; adding a reductant to the solution, and stirring until no more precipitation is generated, then adding carbonate, continuing to stir until no more precipitation is generated, and then filtering, taking the precipitation, and washing to obtain the precipitation of the selenium element and ferrous carbonate; adding an emulsifier to a citric acid buffer solution to obtain an emulsified citric acid buffer solution; adding the precipitation of the selenium element and ferrous carbonate to the emulsified citric acid buffer solution to obtain a sol system; and evaporating to concentrate the sol system, and adjusting the pH to 4.5-8.5 to obtain a ferrous modified selenium sol for inhibiting the accumulation of cadmium and arsenic in rice.
    Type: Application
    Filed: April 30, 2020
    Publication date: October 15, 2020
    Inventors: Fangbai Li, Chuanping Liu, Jianghu Cui
  • Patent number: 10420291
    Abstract: The present invention relates to the field of environmental protection, and in particular to a leaf surface barrier for accurately controlling cadmium absorption and transport related gene expression in rice, and an application thereof. The present invention comprises: reducing a raw material, i.e., selenious acid or selenite, by using ascorbic acid to generate a nanogel, and then emulsifying the nanogel for peptization to obtain a leaf surface barrier for accurately controlling cadmium absorption and transport related gene expression in rice; and then mixing the leaf surface barrier with a silica sol to obtain a composite selenium and silica sol leaf surface barrier. The present invention also provides a leaf surface barricading method for accurately controlling cadmium absorption and transport related gene expression in rice.
    Type: Grant
    Filed: January 3, 2018
    Date of Patent: September 24, 2019
    Assignee: Guangdong Institute of Eco-Environmental Science & Technology
    Inventors: Fangbai Li, Chuanping Liu, Jianghu Cui
  • Patent number: 10259025
    Abstract: A method for preparing the iron-based biochar material, the iron-based biochar material prepared there from and a method for controlling the heavy metal pollution in soil using the iron-based biochar material. For the iron-based biochar material of the present invention, by using a method of high-temperature carbonization, a biomass is used as a raw material and an iron-containing compound is add in the process of preparing biochar, wherein iron is incorporated in a specific ratio, to form the iron-based biochar material with a special structure and function.
    Type: Grant
    Filed: November 5, 2014
    Date of Patent: April 16, 2019
    Assignee: GUANGDONG INSTITUTE OF ECO-ENVIRONMENTAL SCIENCE & TECHNOLOGY
    Inventors: Fangbai Li, Jianghu Cui, Chuanping Liu, Chengshuai Liu
  • Publication number: 20180153109
    Abstract: The present invention relates to the field of environmental protection, and in particular to a leaf surface barrier for ac- curately controlling cadmium absorption and transport related gene expression in rice, and an application thereof. The present inven- tion comprises: reducing a raw material, i.e., selenious acid or selenite, by using ascorbic acid to generate a nanogel, and then emul- sifying the managed for peptization to obtain a leaf surface barrier for accurately controlling cadmium absorption and transport re- lated gene expression in rice; and then mixing the leaf surface barrier with a silica sol to obtain a composite selenium and silica sol leaf surface barrier. The present invention also provides a leaf surface barricading method for accurately controlling cadmium ab- sorption and transport related gene expression in rice.
    Type: Application
    Filed: January 3, 2018
    Publication date: June 7, 2018
    Inventors: Fangbai LI, Chuanping LIU, Jianghu CUI
  • Patent number: 9919978
    Abstract: The present invention discloses a selenium-doped nano-silica sol capable of both inhibiting the absorption and accumulation of heavy metal in rice and producing a selenium-rich rice, and a preparation method thereof. The selenium-doped nano-silica sol of the present invention is prepared mainly by using a nano-silica sol as a carrier, sodium selenite and the like as a raw material, vitamin C and the like as a reducing agent, and polyvinylpyrrolidone and the like as an emulsifier, and doping and dispersing selenium in a specific ratio in a silica sol so as to form a selenium-doped nano-silica sol with a special structure and function. The selenium-doped nano-silica sol prepared according to the invention has high stability and high concentration, and is uniform and transparent, and has a silica content of up to 20% or more, a selenium content of up to 1% or more, and low impurity content.
    Type: Grant
    Filed: October 10, 2014
    Date of Patent: March 20, 2018
    Assignee: Guangdong Institute of Eco-Environmental Science & Technology
    Inventors: Chuanping Liu, Fangbai Li, Jianghu Cui, Xianghua Xu
  • Publication number: 20170282229
    Abstract: The present invention belongs to the technical field of soil heavy metal remediation, specifically discloses a method for preparing the iron-based biochar material, the iron-based biochar material prepared there from and a method for controlling the heavy metal pollution in soil using the iron-based biochar material. For the iron-based biochar material of the present invention, by using a method of high-temperature carbonization, a biomass is used as a raw material and an iron-containing compound is add in the process of preparing biochar, wherein iron is incorporated in a specific ratio, to form the iron-based biochar material with a special structure and function.
    Type: Application
    Filed: November 5, 2014
    Publication date: October 5, 2017
    Inventors: Fangbai LI, Jianghu CUI, Chuanping LIU, Chengshuai LIU
  • Publication number: 20160289129
    Abstract: The present invention discloses a selenium-doped nano-silica sol capable of both inhibiting the absorption and accumulation of heavy metal in rice and producing a selenium-rich rice, and a preparation method thereof. The selenium-doped nano-silica sol of the present invention is prepared mainly by using a nano-silica sol as a carrier, sodium selenite and the like as a raw material, vitamin C and the like as a reducing agent, and polyvinylpyrrolidone and the like as an emulsifier, and doping and dispersing selenium in a specific ratio in a silica sol so as to form a selenium-doped nano-silica sol with a special structure and function. The selenium-doped nano-silica sol prepared according to the invention has high stability and high concentration, and is uniform and transparent, and has a silica content of up to 20% or more, a selenium content of up to 1% or more, and low impurity content.
    Type: Application
    Filed: October 10, 2014
    Publication date: October 6, 2016
    Inventors: Chuanping LIU, Fangbai LI, Jianghu CUI, Xianghua XU