Patents by Inventor Jiangtao Hu

Jiangtao Hu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11340094
    Abstract: A server may determine whether traffic control devices in an environment have changed, based on one or more report messages and sensor data. If the traffic control devices in an environment have changed, the server may generate updated map data and transmit the updated map data to an autonomous driving vehicle (ADV).
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: May 24, 2022
    Assignee: BAIDU USA LLC
    Inventors: Yifei Jiang, Liangliang Zhang, Jiaming Tao, Jiangtao Hu, Dong Li
  • Patent number: 11328219
    Abstract: System and method for training a machine learning model are disclosed. In one embodiment, for each of the driving scenarios, responsive to sensor data from one or more sensors of a vehicle and the driving scenario, driving statistics and environment data of the vehicle are collected while the vehicle is driven by a human driver in accordance with the driving scenario. Upon completion of the driving scenario, the driver is requested to select a label for the completed driving scenario and the selected label is stored responsive to the driver selection. Features are extracted from the driving statistics and the environment data based on predetermined criteria. The extracted features include some of the driving statistics and some of the environment data collected at the different points in time during the driving scenario.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: May 10, 2022
    Assignee: BAIDU USA LLC
    Inventors: Liangliang Zhang, Siyang Yu, Dong Li, Jiangtao Hu, Jiaming Tao, Yifei Jiang
  • Patent number: 11316160
    Abstract: A supercapacity lithium ion battery cathode material, a preparation method therefor and an application thereof. The supercapacity lithium ion battery cathode material consists of a transition metal-containing lithium ion cathode material and carbon which is coated on the surface of the lithium ion cathode material. The transition metal on the surface of the lithium ion cathode material is coordinated with carbon by means of X—C bonds to form transition metal-X—C chemical bonds, such that carbon stably coats the surface of the cathode material, wherein C is SP3 hybridization and/or SP2 hybridization, and X is at least one selected from among N, O and S.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: April 26, 2022
    Assignee: PEKING UNIVERSITY SHENZHEN GRADUATE SCHOOL
    Inventors: Feng Pan, Yandong Duan, Bingkai Zhang, Jiaxin Zheng, Jiangtao Hu, Tongchao Liu, Hua Guo, Yuan Lin, Wen Li, Xiaohe Song, Zengqing Zhuo, Yidong Liu
  • Patent number: 11300955
    Abstract: In one embodiment, a set of predetermined driving parameters is determined from a set of driving statistics data collected from a number of vehicles, which may be driven by human drivers. For each pair of the predetermined driving parameters, a distribution of the pair of driving parameters is plotted based on their relationship on a two-dimensional (2D) distribution space. The 2D distribution space is partitioned into a number of grid cells, each grid cell representing a particular pair of driving parameters. For each of the grid cells, a probability is calculated that the pair of driving parameter likely falls in the grid cell. A grid table is generated corresponding to the pair of driving parameters. The grid table can be utilized during the autonomous driving at real-time or during simulation to determine a ride stability of an autonomous driving vehicle (ADV) in view of the pair of driving parameters.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: April 12, 2022
    Assignee: BAIDU USA LLC
    Inventors: Yifei Jiang, Jinyun Zhou, Jiacheng Pan, Jiaxuan Xu, Hongyi Sun, Jiaming Tao, Shu Jiang, Jinghao Miao, Jiangtao Hu
  • Publication number: 20220097728
    Abstract: Systems and methods are disclosed for optimizing values of a set of tunable parameters of an autonomous driving vehicle (ADV). The controllers can be a linear quadratic regular, a “bicycle model,” a model-reference adaptive controller (MRAC) that reduces actuation latency in control subsystems such as steering, braking, and throttle, or other controller (“controllers”). An optimizer selects a set tunable parameters for the controllers. A task distribution system pairs each set of parameters with each of a plurality of simulated driving scenarios, and dispatches a task to the simulator to perform the simulation with the set of parameters. Each simulation is scored. A weighted score is generated from the simulation. The optimizer uses the weighted score as a target objective for a next iteration of the optimizer, for a fixed number of iterations. A physical real-world ADV is navigated using the optimized set of parameters for the controllers in the ADV.
    Type: Application
    Filed: September 30, 2020
    Publication date: March 31, 2022
    Inventors: Weiman LIN, Yu CAO, Yu WANG, Qi LUO, Shu JIANG, Xiangquan XIAO, Longtao LIN, Jinghao MIAO, Jiangtao HU
  • Publication number: 20220081000
    Abstract: In one embodiment, a system/method generates a driving trajectory for an autonomous driving vehicle (ADV). The system perceives an environment of an autonomous driving vehicle (ADV). The system determines one or more bounding conditions based on the perceived environment. The system generates a first trajectory using a neural network model, wherein the neural network model is trained to generate a driving trajectory. The system evaluates/determines if the first trajectory satisfies the one or more bounding conditions. If the first trajectory satisfies the one or more bounding conditions, the system controls the ADV autonomously according to the first trajectory. Otherwise, the system controls the ADV autonomously according to a second trajectory, where the second trajectory is generated based on an objective function, where the objective function is determined based on at least the one or more bounding conditions.
    Type: Application
    Filed: September 15, 2020
    Publication date: March 17, 2022
    Inventors: YIFEI JIANG, JINYUN ZHOU, JIAMING TAO, SHU JIANG, JIANGTAO HU, JINGHAO MIAO, SHIYU SONG
  • Patent number: 11269352
    Abstract: In one embodiment, a system monitors states of an autonomous driving vehicle (ADV) using a number of sensors mounted on the ADV. The system perceives a driving environment surrounding the ADV using at least a portion of the sensors. The system analyzes the states in view of the driving environment to determine a real-time traffic condition at a point in time. The system determines whether the real-time traffic condition of the driving environment matches at least a predetermined traffic condition. The system transmits data concerning the real-time traffic condition to a remote server over a network to allow the remote server to generate an updated map having real-time traffic information, in response to determining the real-time traffic condition is unknown. In response to receiving the updated map, the system plans and controls the ADV based on the updated map.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: March 8, 2022
    Assignee: BAIDU USA LLC
    Inventors: Jiaming Tao, Dong Li, Yifei Jiang, Liangliang Zhang, Jiangtao Hu
  • Patent number: 11269329
    Abstract: In one embodiment, a set of parameters representing a first state of an autonomous driving vehicle (ADV) to be simulated and a set of control commands to be issued at a first point in time. In response, a localization predictive model is applied to the set of parameters to determine a first position (e.g., x, y) of the ADV. A localization correction model is applied to the set of parameters to determine a set of localization correction factors (e.g., ?x, ?y). The correction factors may represent the errors between the predicted position of the ADV by the localization predictive model and the ground truth measured by sensors of the vehicle. Based on the first position of the ADV and the correction factors, a second position of the ADV is determined as the simulated position of the ADV.
    Type: Grant
    Filed: October 21, 2019
    Date of Patent: March 8, 2022
    Assignee: BAIDU USA LLC
    Inventors: Shu Jiang, Qi Luo, Jinghao Miao, Jiangtao Hu, Jiaxuan Xu, Jingao Wang, Yu Wang, Jinyun Zhou, Runxin He
  • Patent number: 11238733
    Abstract: A social driving style learning framework or system for autonomous vehicles is utilized, which can dynamically learn the social driving styles from surrounding vehicles and adopt the driving style as needed. Each of the autonomous vehicles within a particular driving area is equipped with the driving style learning system to perceive the driving behaviors of the surrounding vehicles to derive a set of driving style elements. Each autonomous vehicle transmits the driving style elements to a centralized remote server. The server aggregates the driving style elements collected from the autonomous vehicles to determine a driving style corresponding to that particular driving area. The server transmits the driving style back to each of the autonomous vehicles. The autonomous vehicles can then decide whether to adopt the driving style, for example, to follow the traffic flow with the rest of the vehicles nearby.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: February 1, 2022
    Assignee: BAIDU USA LLC
    Inventors: Yifei Jiang, Dong Li, Jiaming Tao, Jiangtao Hu, Liyun Li, Guang Yang, Jingao Wang
  • Patent number: 11199846
    Abstract: In an embodiment, a learning-based dynamic modeling method is provided for use with an autonomous driving vehicle. A control module in the ADV can generate current states of the ADV and control commands for a first driving cycle, and send the current states and control commands to a dynamic model implemented using a trained neural network model. Based on the current states and the control commands, the dynamic model generates expected future states for a second driving cycle, during which the control module generates actual future states. The ADV compares the expected future states and the actual future states to generate a comparison result, for use in evaluating one or more of a decision module, a planning module and a control module in the ADV.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: December 14, 2021
    Assignee: BAIDU USA LLC
    Inventors: Qi Luo, Jiaxuan Xu, Kecheng Xu, Xiangquan Xiao, Siyang Yu, Jinghao Miao, Jiangtao Hu
  • Patent number: 11199842
    Abstract: An autonomous driving vehicle (ADV) may determine a predicted path for a moving obstacle and speeds for different portions of the path. The ADV use multiple threads in parallel to determine the path and speeds for the different portions of the path.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: December 14, 2021
    Assignee: BAIDU USA LLC
    Inventors: Liangliang Zhang, Dong Li, Jiangtao Hu, Jiaming Tao, Yifei Jiang, Fan Zhu
  • Patent number: 11186276
    Abstract: In some implementations, a method is provided. The method includes determining a path for an autonomous driving vehicle. The path is located within a first lane of an environment in which the autonomous driving vehicle is currently located. The method also includes obtaining sensor data. The sensor data indicates a set of speeds for a set of moving obstacles located in a second lane of the environment and wherein the second lane is adjacent to the first lane. The method further includes determining whether the set of speeds is lower than a threshold speed. The method further includes determining a new speed for the autonomous driving vehicle in response to determining that the set of speeds is lower than the threshold speed. The method further includes controlling the autonomous driving vehicle based on the path and the new speed.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: November 30, 2021
    Assignee: BAIDU USA LLC
    Inventors: Jiaming Tao, Liangliang Zhang, Dong Li, Yifei Jiang, Jiangtao Hu, Fan Zhu
  • Patent number: 11183059
    Abstract: According to one embodiment, in response to a request to park an ADV into a parking lot, a remote server is accessed over a network (e.g., a VX2 link) to obtain a list of parking spaces that appear to be available in the parking lot. Based on the list of available parking spaces and the map associated with the parking lot, a route is generated to navigate through at least the available parking spaces. The ADV is driven according to the route to locate at least one of the available parking spaces and to park the ADV into the located available parking space. The centralized server is configured to periodically receive signals from a number of parking lots indicating which of the parking spaces of the parking lots are apparently available.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: November 23, 2021
    Assignee: BAIDU USA LLC
    Inventors: Jinyun Zhou, Runxin He, Qi Luo, Jinghao Miao, Jiangtao Hu, Yu Wang, Jiaxuan Xu, Shu Jiang
  • Patent number: 11180165
    Abstract: In one embodiment, an autonomous driving vehicle (ADV) operates in an on-lane mode, where the ADV follows a path along a vehicle lane. In response to determining that the ADV is approaching a dead-end, the ADV switches to an open-space mode. While in the open-space mode, the ADV conducts a three-point turn using a series of steering and throttle commands to generate forward and reverse movements until the ADV is within a) a threshold heading, and b) a threshold distance, relative to the vehicle lane. The ADV can then return to the on-lane mode and resume along the vehicle lane away from the dead-end.
    Type: Grant
    Filed: December 26, 2019
    Date of Patent: November 23, 2021
    Assignee: BAIDU USA LLC
    Inventors: Jinyun Zhou, Shu Jiang, Jiaming Tao, Qi Luo, Jinghao Miao, Jiangtao Hu, Jiaxuan Xu, Yu Wang
  • Patent number: 11167770
    Abstract: Systems and methods are disclosed for identifying time-latency and subsystem control actuation dynamic delay due to second order dynamics that are neglected in control systems of the prior art. Embodiments identify time-latency and subsystem control actuation delays by developing a discrete-time dynamic model having parameters and estimating the parameters using a least-squares method over selected crowd-driving data. After estimating the model parameters, the model can be used to identify dynamic actuation delay metrics such as time-latency, rise time, settling time, overshoot, bandwidth, and resonant peak of the control subsystem. Control subsystems can include steering, braking, and throttling.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: November 9, 2021
    Assignee: BAIDU USA LLC
    Inventors: Yu Wang, Qi Luo, Shu Jiang, Jinghao Miao, Jiangtao Hu, Jingao Wang, Jinyun Zhou, Jiaxuan Xu
  • Publication number: 20210323578
    Abstract: In one embodiment, a computer-implemented method for optimizing a controller of an autonomous driving vehicle (ADV) includes obtaining several samples, each sample having a set of parameters, iteratively performing, until a predetermined condition is satisfied: determining, for each sample, a score according to a configuration of the controller based on the set of parameters of the sample, applying a machine learning model to the samples and corresponding scores to determine a mean function and a variance function, producing a new sample as a minimum of a function of the mean function and the variance function with respect to an input space of the set of parameters, adding the new sample to the several samples, and outputting the new sample as an optimal sample, where parameters of the optimal sample are utilized to configure the controller to autonomously drive the ADV.
    Type: Application
    Filed: April 15, 2020
    Publication date: October 21, 2021
    Inventors: YU WANG, QI LUO, JIAXUAN XU, JINYUN ZHOU, SHU JIANG, JIAMING TAO, YU CAO, WEI-MAN LIN, KECHENG XU, JINGHAO MIAO, JIANGTAO HU
  • Publication number: 20210323564
    Abstract: Systems and methods are disclosed for reducing second order dynamics delays in a control subsystem (e.g. throttle, braking, or steering) in an autonomous driving vehicle (ADV) and increasing control system bandwidth by accounting for time-latency in a control subsystem actuation system. A control input is received from an ADV's autonomous driving system. The control input is translated into a control command of the control subsystem of the ADV. A reference actuation output and a predicted actuation output are generated corresponding to a by-wire (“real”) actuation action for the control subsystem. A control error is determined between the reference actuation action and the by-wire actuation action. A predicted control error is determined between the predicted actuation action and the between the by-wire actuation action. Adaptive gains are determined and applied to the by-wire actuation action to generate a second by-wire actuation action.
    Type: Application
    Filed: April 21, 2020
    Publication date: October 21, 2021
    Inventors: Yu WANG, Qi LUO, Shu JIANG, Jinghao MIAO, Jiangtao HU, Jingao WANG, Jinyun ZHOU, Jiaxuan XU
  • Publication number: 20210318683
    Abstract: In one embodiment, method performed by an autonomous driving vehicle (ADV) that determines, within a driving space, a plurality of routes from a current location of the ADV to a desired location. The method determines, for each route of the plurality of routes, an objective function to control the ADV autonomously along the route and, for each of the objective functions, performs Differential Dynamic Programming (DDP) optimization in view of a set of constraints to produce a path trajectory. The method determines whether at least one of the path trajectories satisfies each constraint and, in response to a path trajectory satisfying each of the constraints, selects the path trajectory for navigating the ADV from the current location to the desired location.
    Type: Application
    Filed: April 8, 2020
    Publication date: October 14, 2021
    Inventors: QI LUO, JINYUN ZHOU, SHU JIANG, JIAMING TAO, YU WANG, JIAXUAN XU, KECHENG XU, JINGHAO MIAO, JIANGTAO HU
  • Patent number: 11143513
    Abstract: According to one embodiment, perception data describing a set of trajectories driven by a number of vehicles is received at a server from the vehicles or data collection agents over a network. The vehicles were driving through a road segment of a road over a period of time and their driving trajectories were captured. A trajectory analysis is the performed on the perception data using a set of rules to determine driving behaviors of the corresponding vehicles. A lane configuration of the road segment is then determined based on the driving behaviors. A map segment of a navigation map is then updated based on the lane configuration of one or more lanes within the road segment. A higher definition map can be generated based on the updates of the navigation map and the lane configuration, which can be utilized to autonomously drive an ADV subsequently.
    Type: Grant
    Filed: October 19, 2018
    Date of Patent: October 12, 2021
    Assignee: BAIDU USA LLC
    Inventors: Yifei Jiang, Liangliang Zhang, Dong Li, Jiaming Tao, Jiangtao Hu
  • Patent number: 11137762
    Abstract: In one embodiment, a method, apparatus, and system may predict behavior of environmental objects using machine learning at an autonomous driving vehicle (ADV). One or more yield/overtake decisions are made with respect to one or more objects in the ADV's surrounding environment using a data processing architecture comprising at least a first, a second, and a third neural networks, the first, the second, and the third neural networks having been trained with a training data set. Driving signals are generated based at least in part on the yield/overtake decisions to control operations of the ADV.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: October 5, 2021
    Assignee: BAIDU USA LLC
    Inventors: Liangliang Zhang, Hongyi Sun, Dong Li, Jiangtao Hu, Jinghao Miao, Jiaming Tao, Yifei Jiang