Patents by Inventor Jianhui Ye

Jianhui Ye has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11423638
    Abstract: An optical sensor module for sensing a face of a person for user identification and authentication, where a face illumination module is provided to use an array of face illumination light sources arranged in a regular array pattern to produce illumination light which may be invisible light such as infrared light and an optical diffraction element that is located to receive illumination light beams from the face illumination light sources and to transfer each illumination light beam from each face illumination light source in the array into a patterned light beam containing illumination light spots.
    Type: Grant
    Filed: March 24, 2020
    Date of Patent: August 23, 2022
    Assignee: SHENZHEN GOODIX TECHNOLOGY CO., LTD.
    Inventors: Jianhui Ye, Bo Pi
  • Publication number: 20200364489
    Abstract: An optical sensor module for sensing a face of a person for user identification and authentication, where a face illumination module is provided to use an array of face illumination light sources arranged in a regular array pattern to produce illumination light which may be invisible light such as infrared light and an optical diffraction element that is located to receive illumination light beams from the face illumination light sources and to transfer each illumination light beam from each face illumination light source in the array into a patterned light beam containing illumination light spots.
    Type: Application
    Filed: March 24, 2020
    Publication date: November 19, 2020
    Inventors: Jianhui YE, Bo PI
  • Patent number: 8354347
    Abstract: A composite etch stop layer which comprises primary and secondary stop layers is used to form contacts in a dielectric layer to contact regions in a substrate. The secondary etch stop layer includes a high-k dielectric material to achieve high etch selectivity with the dielectric layer during contact formation. The secondary stop layer is removed to expose the contact regions. Removal of the secondary stop layer is achieved with high selectivity to the materials therebelow.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: January 15, 2013
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Jianhui Ye, Huang Liu, Alex K H See, Wei Lu, Chun Hui Low, Chim Seng Seet, Mei Sheng Zhou, Liang Choo Hsia
  • Patent number: 7960283
    Abstract: A method for forming silicide contacts in integrated circuits (ICs) is described. A spacer pull-back etch is performed during the salicidation process to reduce the stress between the spacer and source/drain silicide contact at the spacer undercut. This prevents the propagation of surface defects into the substrate, thereby minimizing the occurrence of silicide pipe defects. The spacer pull-back etch can be performed after a first annealing step to form the silicide contacts.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: June 14, 2011
    Assignee: Chartered Semiconductor Manufacturing, Ltd.
    Inventors: Jeff Jianhui Ye, Huang Liu, Alex K H See, Wei Lu, Hai Cong, Hui Peng Koh, Mei Sheng Zhou, Liang Choo Hsia
  • Publication number: 20100267236
    Abstract: A method for forming silicide contacts in integrated circuits (ICs) is described. A spacer pull-back etch is performed during the salicidation process to reduce the stress between the spacer and source/drain silicide contact at the spacer undercut. This prevents the propagation of surface defects into the substrate, thereby minimizing the occurrence of silicide pipe defects. The spacer pull-back etch can be performed after a first annealing step to form the silicide contacts.
    Type: Application
    Filed: June 28, 2010
    Publication date: October 21, 2010
    Applicant: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Jianhui YE, Huang LIU, Alex KH SEE, Wei LU, Hai CONG, Hui Peng KOH, Mei Sheng ZHOU, Liang Choo HSIA
  • Patent number: 7745320
    Abstract: A method for forming silicide contacts in integrated circuits (ICs) is described. A spacer pull-back etch is performed during the salicidation process to reduce the stress between the spacer and source/drain silicide contact at the spacer undercut. This prevents the propagation of surface defects into the substrate, thereby minimizing the occurrence of silicide pipe defects. The spacer pull-back etch can be performed after a first annealing step to form the silicide contacts.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: June 29, 2010
    Assignee: Chartered Semiconductor Manufacturing, Ltd.
    Inventors: Jeff Jianhui Ye, Huang Liu, Alex K H See, Wei Lu, Hai Cong, Hui Peng Koh, Mei Sheng Zhou, Liang Choo Hsia
  • Publication number: 20090289309
    Abstract: A method for forming silicide contacts in integrated circuits (ICs) is described. A spacer pull-back etch is performed during the salicidation process to reduce the stress between the spacer and source/drain silicide contact at the spacer undercut. This prevents the propagation of surface defects into the substrate, thereby minimizing the occurrence of silicide pipe defects. The spacer pull-back etch can be performed after a first annealing step to form the silicide contacts.
    Type: Application
    Filed: May 21, 2008
    Publication date: November 26, 2009
    Applicant: CHARTERED SEMICONDUCTOR MANUFACTURING, LTD.
    Inventors: Jianhui YE, Huang LIU, Alex KH SEE, Wei LU, Hai CONG, Hui Peng KOH, Mei Sheng ZHOU, Liang Choo HSIA
  • Publication number: 20090146296
    Abstract: A composite etch stop layer which comprises primary and secondary stop layers is used to form contacts in a dielectric layer to contact regions in a substrate. The secondary etch stop layer includes a high-k dielectric material to achieve high etch selectivity with the dielectric layer during contact formation. The secondary stop layer is removed to expose the contact regions. Removal of the secondary stop layer is achieved with high selectivity to the materials therebelow.
    Type: Application
    Filed: December 11, 2007
    Publication date: June 11, 2009
    Applicant: Chartered Semiconductor Manufacturing, Ltd.
    Inventors: Jianhui YE, Huang LIU, Alex KH SEE, Wei LU, Chun Hui LOW, Chim Seng SEET, Mei Sheng ZHOU, Liang Choo HSIA
  • Publication number: 20070066047
    Abstract: A method for forming an opening on a material layer is provided. First, a dielectric layer is formed on the material layer. Then, a metallic hard mask layer and a cap layer are sequentially formed on the dielectric layer. Thereafter, a patterned photoresist layer is formed on the cap layer. The patterned photoresist layer exposes a portion of the surface of the cap layer. After that, a first etching operation is carried out using the patterned photoresist layer as a mask to remove a portion of the cap layer and the metallic hard mask layer until the surface of the dielectric layer is exposed. Then, the photoresist layer is removed. A second etching operation is carried out using the cap layer and the metallic hard mask layer as a mask to remove a portion of the dielectric layer and form an opening.
    Type: Application
    Filed: September 18, 2005
    Publication date: March 22, 2007
    Inventors: Jianhui Ye, Kai Hung Alex See, Tien-Cheng Lan, Meisheng Zhou
  • Patent number: 6638365
    Abstract: A method of preparing a silicon surface for a subsequent processing said such as thermal oxidation, or metal silicide formation, via use of a novel wet chemical clean procedure, has been developed. The novel wet chemical clean procedure is comprised of three specific stages, with the first stage featuring the removal of organic contaminants and the growth of a native oxide layer on the silicon surface. A second stage features removal of the native oxide layer and removal of metallic contaminants from the silicon surface, while the third stage is used to dry the silicon surface. The novel wet chemical clean procedure is performed in less time, and using less chemicals, then counterpart wet chemical cleans also used for the preparation of silicon surfaces for subsequent processing steps.
    Type: Grant
    Filed: October 9, 2001
    Date of Patent: October 28, 2003
    Assignees: Chartered Semiconductor Manufacturing Ltd., Institute of Materials Research and Engineering
    Inventors: Jianhui Ye, Simon Chooi, Alex See
  • Publication number: 20030069151
    Abstract: A method of preparing a silicon surface for a subsequent processing said such as thermal oxidation, or metal silicide formation, via use of a novel wet chemical clean procedure, has been developed. The novel wet chemical clean procedure is comprised of three specific stages, with the first stage featuring the removal of organic contaminants and the growth of a native oxide layer on the silicon surface. A second stage features removal of the native oxide layer and removal of metallic contaminants from the silicon surface, while the third stage is used to dry the silicon surface. The novel wet chemical clean procedure is performed in less time, and using less chemicals, then counterpart wet chemical cleans also used for the preparation of silicon surfaces for subsequent processing steps.
    Type: Application
    Filed: October 9, 2001
    Publication date: April 10, 2003
    Applicant: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Jianhui Ye, Simon Chooi, Alex See
  • Patent number: 6063547
    Abstract: A method of patterning conductive lines using a bottom anti-reflective coating (BARC) composed of Poly-p-phenylene sulfide (PPS) film 30 formed using a Physical Vapor Deposition (PVD) process. The PPS BARC 30 is easy to remove and has superior planarization. The method comprises:a) forming conductive layer 26 over a semiconductor structure 10;b) forming a Poly-p-phenylene sulfide (PPS) layer 30 over said conductive layer using a Physical Vapor Deposition (PVD) process;c) forming a photoresist pattern 34 over said Poly-p-phenylene sulfide (PPS) layer 30; said Poly-p-phenylene sulfide (PPS) layer acting as a bottom Anti-reflective coating (BARC);d) etching said conductive layer 26 using said photoresist pattern 34 and as a mask forming a conductive pattern;e) removing said photoresist pattern 34;f) removing said Poly-p-phenylene sulfide (PPS) layer by heating and vaporizing said Poly-p-phenylene sulfide (PPS) layer.
    Type: Grant
    Filed: June 11, 1998
    Date of Patent: May 16, 2000
    Assignee: Chartered Semiconductor Manufacturing, Ltd.
    Inventors: Jianhui Ye, Mei Sheng Zhou