Patents by Inventor Jianming Tao

Jianming Tao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10556290
    Abstract: A method for performing coordinated stationary tracking during a welding operation performed on a cylindrical part includes mounting a cylindrical part on a rotating arm having a central rotational axis and directing a welding torch to a weld position wherein the welding torch is directed toward an initial weld joint position. The rotating arm is rotated about the central rotational axis thereof to provide relative movement between the cylindrical part and the welding torch when the welding torch is positioned at the weld position. During the rotating of the rotating arm the welding torch remains substantially stationary while a tracking sensor of the welding robot periodically determines geometric information of the cylindrical part based on a rotational position of the rotating arm. The geometric information regarding the cylindrical part is then used to determine vertical and lateral offsets to be applied to the welding torch relative to the weld position.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: February 11, 2020
    Assignee: FANUC ROBOTICS AMERICA CORPORATION
    Inventors: Jianming Tao, Bradley Niederquell, Peter Levick
  • Patent number: 10052759
    Abstract: A method for adaptive control of a robotic operation of a robot includes providing a software program to generate process signals executable during the robotic operation, including one or more execution commands. A first Signal Value channel is provided to control at least one control process parameter of the robot, where the first Signal Value channel is subject to a first time latency. The execution timing of the first Signal Value channel is synchronized with the one or more execution commands by accounting for the first time latency in relation to the one or more execution commands. The software program is run to generate the process signals and the robot is operated in response to the synchronized execution timing of the execution commands.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: August 21, 2018
    Assignee: FANUC AMERICA CORPORATION
    Inventors: Jianming Tao, Charles R. Strybis, Bradley Niederquell, Jason Tsai
  • Publication number: 20170144256
    Abstract: A method for performing coordinated stationary tracking during a welding operation performed on a cylindrical part includes mounting a cylindrical part on a rotating arm having a central rotational axis and directing a welding torch to a weld position wherein the welding torch is directed toward an initial weld joint position. The rotating arm is rotated about the central rotational axis thereof to provide relative movement between the cylindrical part and the welding torch when the welding torch is positioned at the weld position. During the rotating of the rotating arm the welding torch remains substantially stationary while a tracking sensor of the welding robot periodically determines geometric information of the cylindrical part based on a rotational position of the rotating arm. The geometric information regarding the cylindrical part is then used to determine vertical and lateral offsets to be applied to the welding torch relative to the weld position.
    Type: Application
    Filed: November 20, 2015
    Publication date: May 25, 2017
    Inventors: Jianming Tao, Bradley Niederquell, Peter Levick
  • Patent number: 9144904
    Abstract: A system and method for controlling avoiding collisions and deadlocks in a workcell containing multiple robots automatically determines the potential deadlock conditions and identifies a way to avoid these conditions. Deadlock conditions are eliminated by determining the deadlock-free motion statements prior to execution of the motions that have potential deadlock conditions. This determination of deadlock-free motion statements can be done offline, outside normal execution, or it can be done during normal production execution. If there is sufficient CPU processing time available, the determination during normal production execution provides the most flexibility to respond to dynamic conditions such as changes in I/O timing or the timing of external events or sequences. For minimal CPU impact the determination is done offline where many permutations of programming sequences can be analyzed and an optimized sequence of execution may be found.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: September 29, 2015
    Assignee: Fanuc Robotics America Corporation
    Inventors: H. Dean McGee, Tien L. Chang, Peter Swanson, Jianming Tao, Di Xiao, Ho Cheung Wong, Sai-Kai Cheng, Jason Tsai
  • Publication number: 20140297033
    Abstract: A method for adaptive control of a robotic operation of a robot includes providing a software program to generate process signals executable during the robotic operation, including one or more execution commands. A first Signal Value channel is provided to control at least one control process parameter of the robot, where the first Signal Value channel is subject to a first time latency. The execution timing of the first Signal Value channel is synchronized with the one or more execution commands by accounting for the first time latency in relation to the one or more execution commands. The software program is run to generate the process signals and the robot is operated in response to the synchronized execution timing of the execution commands.
    Type: Application
    Filed: March 28, 2014
    Publication date: October 2, 2014
    Inventors: Jianming Tao, Charles R. Strybis, Bradley Niederquell, Jason Tsai
  • Patent number: 8843234
    Abstract: A system and method for controlling motion interference avoidance for a plurality of robots are disclosed, the system and method including a dynamic space check system wherein an efficiency of operation is maximized and a potential for interference or collision is minimized.
    Type: Grant
    Filed: April 13, 2007
    Date of Patent: September 23, 2014
    Assignee: Fanuc America Corporation
    Inventors: Jianming Tao, H. Dean McGee, Chi-Keng Tsai, Hadi Abu Akeel
  • Patent number: 8473103
    Abstract: A method of and apparatus for achieving dynamic robot accuracy includes a control system utilizing a dual position loop control. An outer position loop uses secondary encoders on the output side of the gear train of a robot joint axis, while the inner position loop uses the primary encoder attached to the motor. Both single and dual loop control can be used on the same robot and tooling axes.
    Type: Grant
    Filed: January 26, 2010
    Date of Patent: June 25, 2013
    Assignee: Fanuc Robotics America, Inc.
    Inventors: Jason Tsai, Eric Wong, Jianming Tao, H. Dean McGee, Hadi Akeel
  • Patent number: 8315738
    Abstract: A system and method for controlling avoiding collisions in a workcell containing multiple robots is provided. The system includes a sequence of instructions residing on a controller for execution thereon to perform an interference check automatic zone method. The interference check automatic zone method includes the steps of: determining a first portion of a common space that is occupied during a movement of a first robot along a first programmed path; determining a second portion of the common space that is occupied during a movement of a second robot along a second programmed path; comparing the first portion and the second portion to determine if an overlap exists therebetween; and moving the first robot and the second robot in response to whether or not the overlap exists.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: November 20, 2012
    Assignee: Fanuc Robotics America, Inc.
    Inventors: Tien L. Chang, H. Dean McGee, Ho Cheung Wong, Jianming Tao, Jason Tsai
  • Publication number: 20120215351
    Abstract: A system and method for controlling avoiding collisions and deadlocks in a workcell containing multiple robots automatically determines the potential deadlock conditions and identifies a way to avoid these conditions. Deadlock conditions are eliminated by determining the deadlock-free motion statements prior to execution of the motions that have potential deadlock conditions. This determination of deadlock-free motion statements can be done offline, outside normal execution, or it can be done during normal production execution. If there is sufficient CPU processing time available, the determination during normal production execution provides the most flexibility to respond to dynamic conditions such as changes in I/O timing or the timing of external events or sequences. For minimal CPU impact the determination is done offline where many permutations of programming sequences can be analyzed and an optimized sequence of execution may be found.
    Type: Application
    Filed: May 2, 2012
    Publication date: August 23, 2012
    Inventors: H. Dean McGee, Tien L. Chang, Peter Swanson, Jianming Tao, Di Xiao, Ho Cheung Wong, Sai-Kai Cheng, Jason Tsai
  • Patent number: 8046102
    Abstract: A synchronous high speed motion stop for a series of multi-top loaders residing on ā€œnā€ controllers on one rail achieves effective detection of the servo-error status and shut off of the trailing controller's servo power within 3 ITP time. The control method reduces the unnecessary error recovery because it only shuts off its immediate trailing controller without aborting its leading controller, allowing the leading controller to complete the cycle tasks. The cascade control method produces a synchronous high-speed motion stop for the robots across the controllers and effectively prevents the collision between the robots.
    Type: Grant
    Filed: May 17, 2007
    Date of Patent: October 25, 2011
    Assignee: Fanuc Robotics America, Inc.
    Inventors: Jianming Tao, H. Dean McGee, Chi-Keng Tsai, Ho Cheung Wong, Ian Orr, Richard Motley
  • Patent number: 7860609
    Abstract: A robot multi-arm control system includes robot controllers that communicate via a network to transmit synchronization information from a master controller to one or more slave controllers in order to coordinate manufacturing processes. The system accounts for the network communication delay when synchronizing the event timing for process and motion synchronization.
    Type: Grant
    Filed: May 4, 2006
    Date of Patent: December 28, 2010
    Assignee: Fanuc Robotics America, Inc.
    Inventors: Akihiro Yanagita, Jianming Tao, Tien L. Chang, Ho Cheung Wong, H. Dean McGee, Chi-Keng Tsai, Sai-Kai Cheng, Steven E. Nickel, Hadi Akeel
  • Publication number: 20100191374
    Abstract: A method of and apparatus for achieving dynamic robot accuracy includes a control system utilizing a dual position loop control. An outer position loop uses secondary encoders on the output side of the gear train of a robot joint axis, while the inner position loop uses the primary encoder attached to the motor. Both single and dual loop control can be used on the same robot and tooling axes.
    Type: Application
    Filed: January 26, 2010
    Publication date: July 29, 2010
    Inventors: Jason Tsai, Eric Wong, Jianming Tao, H. Dean McGee, Hadi Akeel
  • Publication number: 20090326711
    Abstract: A system and method for controlling avoiding collisions in a workcell containing multiple robots is provided. The system includes a sequence of instructions residing on a controller for execution thereon to perform an interference check automatic zone method. The interference check automatic zone method includes the steps of: determining a first portion of a common space that is occupied during a movement of a first robot along a first programmed path; determining a second portion of the common space that is occupied during a movement of a second robot along a second programmed path; comparing the first portion and the second portion to determine if an overlap exists therebetween; and moving the first robot and the second robot in response to whether or not the overlap exists.
    Type: Application
    Filed: May 21, 2008
    Publication date: December 31, 2009
    Inventors: Tien L. Chang, H. Dean McGee, Ho Cheung Wong, Jianming Tao, Jason Tsai
  • Publication number: 20090204258
    Abstract: A system and method for controlling motion interference avoidance for a plurality of robots are disclosed, the system and method including a dynamic space check system wherein an efficiency of operation is maximized and a potential for interference or collision is minimized.
    Type: Application
    Filed: April 13, 2007
    Publication date: August 13, 2009
    Inventors: Jianming Tao, H. Dean McGee, Chi-Keng Tsai, Hadi Abu Akeel
  • Publication number: 20080288109
    Abstract: A synchronous high speed motion stop for a series of multi-top loaders residing on ā€œnā€ controllers on one rail achieves effective detection of the servo-error status and shut off of the trailing controller's servo power within 3 ITP time. The control method reduces the unnecessary error recovery because it only shuts off its immediate trailing controller without aborting its leading controller, allowing the leading controller to complete the cycle tasks. The cascade control method produces a synchronous high-speed motion stop for the robots across the controllers and effectively prevents the collision between the robots.
    Type: Application
    Filed: May 17, 2007
    Publication date: November 20, 2008
    Inventors: Jianming Tao, H. Dean McGee, Chi-Keng Tsai, Ho Cheung Wong, Ian Orr, Richard Motley
  • Publication number: 20060287769
    Abstract: A robot multi-arm control system includes robot controllers that communicate via a network to transmit synchronization information from a master controller to one or more slave controllers in order to coordinate manufacturing processes. The system accounts for the network communication delay when synchronizing the event timing for process and motion synchronization.
    Type: Application
    Filed: May 4, 2006
    Publication date: December 21, 2006
    Inventors: Akihiro Yanagita, Jianming Tao, Tien Chang, Ho Wong, H. McGee, Chi-Keng Tsai, Sai-Kai Cheng, Steven Nickel, Hadi Akeel
  • Patent number: 6243621
    Abstract: A method of determining position information of a workpiece relative to a robot includes the ability to move the workpiece into a variety of orientations relative to the robot during the touch sensing location procedure. The position information is then used for performing a robot operation including coordinated motion. A coordinated reference frame is defined with respect to a moveable positioner that supports the workpiece. Known kinematic relationships between the positioner and the robot are used to control operation of the robot within the coordinated reference frame throughout the touch sensing location procedure. By moving the workpiece relative to the robot during the touch sensing location procedure, a greater variety of workpieces can be processed and relatively complicated workpiece configurations can be accurately determined. The robot operating parameters are modified according to the determined position information.
    Type: Grant
    Filed: March 13, 1998
    Date of Patent: June 5, 2001
    Assignee: FANUC Robotics North America, Inc.
    Inventors: Jianming Tao, Jason Tsai, Robert A. Bolhouse
  • Patent number: 6064168
    Abstract: A method of controlling movement of a robot includes moving only the wrist portion about two of the wrist axes to achieve a repeated and cyclical movement, such as a back-and-forth movement of the tool relative to a preselected path. Since only the wrist is moved, the range of available tool positions can be determined. In most instances, the desired position of the tool as it deviates from the path is outside of the range of available tool positions, given that only the wrist will move. The method of this invention includes determining a target position within the range of available positions that best corresponds to the desired position of the tool. A unique inverse kinematics solution, which includes fixing one of the wrist axes, is used to determine the wrist orientation required to place the tool into the target position.
    Type: Grant
    Filed: March 13, 1998
    Date of Patent: May 16, 2000
    Assignee: FANUC Robotics North America, Inc.
    Inventors: Jianming Tao, Jason Tsai, H. Dean McGee