Patents by Inventor Jianwen Shao

Jianwen Shao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060152181
    Abstract: A prior art direct back EMF detection method synchronously sampled motor back EMF during PWM “off” time without the need to sense or re-construct the motor neutral in a sensorless brushless DC (BLDC) motor drive system. Since this direct back EMF sensing scheme requires a minimum PWM “off” time to sample the back EMF signal, the duty cycle cannot reach 100%. Also in some applications, for example, high inductance motors, the long settling time of a parasitic resonant between the motor inductance and the parasitic capacitance of power devices can cause false zero crossing detection of back EMF. An improved direct back EMF detection scheme samples the motor back EMF synchronously during PWM “on” time at high speed. In the final system the motor back EMF can be detected during PWM “off” time at low speed, and it is detected during PWM “on” time at high speed.
    Type: Application
    Filed: March 17, 2005
    Publication date: July 13, 2006
    Inventors: Jianwen Shao, Dennis Nolan
  • Publication number: 20060043911
    Abstract: In a method for producing a control signal for regulating a drive current for driving an LED, a current through the LED is sensed, wherein the LED is driven by a power converter output, and wherein an output voltage of the power converter is proportionately controlled by a control signal. Next, a power supply voltage is sensed. The control signal is produced for the power converter, wherein the control signal is proportional to a difference between a reference voltage and the current through the LED. The control signal is then offset in response to the power supply voltage to reduce the current through the LED as the power supply voltage drops.
    Type: Application
    Filed: August 31, 2004
    Publication date: March 2, 2006
    Inventors: Jianwen Shao, Clifford Ortmeyer
  • Publication number: 20050030002
    Abstract: A device and method that determine a freewheeling rotation of an electric motor. The method includes steps of measuring first and second signals from respective first and second windings of an unenergized motor, and determining from the first and second signals whether the unenergized motor is rotating. The method may also include determining from the first and second signals the direction of rotation if the unenergized motor is rotating. The method may further include measuring a third signal from a third winding of the unenergized motor, and determining whether the motor is rotating may include determining that the motor is not rotating if the first, second, and third signals are equal. The first and second signals may each comprise a respective back voltage.
    Type: Application
    Filed: August 8, 2003
    Publication date: February 10, 2005
    Inventors: Jianwen Shao, Thomas Hopkins
  • Publication number: 20040000885
    Abstract: A circuit and method provide a back EMF signal that represents a back EMF voltage induced in a coil of a brushless motor. In one embodiment of the invention, the circuit includes an input node operable to receive a tap voltage from the coil, and a network coupled to the input node and operable to generate the back EMF signal by removing a predetermined offset voltage from the tap voltage. Such a circuit provides a signal that more accurately indicates a zero crossing than existing circuits for controlling a sensorless brushless motor.
    Type: Application
    Filed: June 27, 2003
    Publication date: January 1, 2004
    Applicant: STMicroelectronics, Inc.
    Inventor: Jianwen Shao
  • Patent number: 6633145
    Abstract: A system and method of advancing the commutation sequence of a brushless DC motor is provided. The motor having a plurality of coils, each of the coils coupled together at one end to a common center tap and coupled at an opposite end, through a respective coil tap, to both a source voltage and ground via selectively actuateable switches having diodes coupled in parallel therewith. The motor operates in a pulse width modulation (PWM) mode having PWM-on states and PWM-off states. During PWM-off states, a coil tap voltage from the coil tap of a floating phase is provided to a preconditioning circuit. The preconditioning circuit adjusts the floating phase coil tap voltage to compensate for an amount of voltage substantially equal to an amount of voltage by which a voltage at the center tap deviates from zero. The preconditioning circuit further includes sharpening circuitry for amplifying the adjusted floating phase coil tap voltage.
    Type: Grant
    Filed: November 20, 2001
    Date of Patent: October 14, 2003
    Assignee: STMicroelectronics, Inc.
    Inventors: Jianwen Shao, Dennis C. Nolan, Kwan A. Haughton, Thomas L. Hopkins
  • Publication number: 20030098666
    Abstract: A system and method of advancing the commutation sequence of a brushless DC motor is provided. The motor having a plurality of coils, each of the coils coupled together at one end to a common center tap and coupled at an opposite end, through a respective coil tap, to both a source voltage and ground via selectively actuateable switches having diodes coupled in parallel therewith. The motor operates in a pulse width modulation (PWM) mode having PWM-on states and PWM-off states. During PWM-off states, a coil tap voltage from the coil tap of a floating phase is provided to a preconditioning circuit. The preconditioning circuit adjusts the floating phase coil tap voltage to compensate for an amount of voltage substantially equal to an amount of voltage by which a voltage at the center tap deviates from zero. The preconditioning circuit further includes sharpening circuitry for amplifying the adjusted floating phase coil tap voltage.
    Type: Application
    Filed: November 20, 2001
    Publication date: May 29, 2003
    Inventors: Jianwen Shao, Dennis C. Nolan, Kwan A. Haughton, Thomas L. Hopkins