Patents by Inventor Jianxin Liu

Jianxin Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9825030
    Abstract: An integrated circuit including a trench in the substrate with a high quality trench oxide grown on the sidewalls and the bottom of the trench where the ratio of the thickness of the high quality trench oxide formed on the sidewalls to the thickness formed on the bottom is less than 1.2. An integrated circuit including a trench with high quality oxide is formed by first growing a sacrificial oxide in dilute oxygen at a temperature in the range of 1050° C. to 1250° C., stripping the sacrificial oxide, growing high quality oxide in dilute oxygen plus trans 1,2 dichloroethylene at a temperature in the range of 1050° C. to 1250° C., and annealing the high quality oxide in an inert ambient at a temperature in the range of 1050° C. to 1250° C.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: November 21, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Yufei Xiong, Yunlong Liu, Hong Yang, Jianxin Liu
  • Publication number: 20160372463
    Abstract: An integrated circuit including a trench in the substrate with a high quality trench oxide grown on the sidewalls and the bottom of the trench where the ratio of the thickness of the high quality trench oxide formed on the sidewalls to the thickness formed on the bottom is less than 1.2. An integrated circuit including a trench with high quality oxide is formed by first growing a sacrificial oxide in dilute oxygen at a temperature in the range of 1050° C. to 1250° C., stripping the sacrificial oxide, growing high quality oxide in dilute oxygen plus trans 1,2 dichloroethylene at a temperature in the range of 1050° C. to 1250° C., and annealing the high quality oxide in an inert ambient at a temperature in the range of 1050° C. to 1250° C.
    Type: Application
    Filed: September 2, 2016
    Publication date: December 22, 2016
    Inventors: Yufei XIONG, Yunlong LIU, Hong YANG, Jianxin LIU
  • Patent number: 9461131
    Abstract: An integrated circuit including a trench in the substrate with a high quality trench oxide grown on the sidewalls and the bottom of the trench where the ratio of the thickness of the high quality trench oxide formed on the sidewalls to the thickness formed on the bottom is less than 1.2. An integrated circuit including a trench with high quality oxide is formed by first growing a sacrificial oxide in dilute oxygen at a temperature in the range of 1050° C. to 1250° C., stripping the sacrificial oxide, growing high quality oxide in dilute oxygen plus trans 1,2 dichloroethylene at a temperature in the range of 1050° C. to 1250° C., and annealing the high quality oxide in an inert ambient at a temperature in the range of 1050° C. to 1250° C.
    Type: Grant
    Filed: June 15, 2015
    Date of Patent: October 4, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Yufei Xiong, Yunlong Liu, Hong Yang, Jianxin Liu
  • Patent number: 9030023
    Abstract: A method for forming bond pads on a semiconductor die includes forming a dielectric stack including a bottom and top dielectric layer having a contact hole therethrough over a bond pad. An outer edge of the bottom dielectric layer within the contact hole extends beyond an outer edge of the top dielectric layer to define a bond pad edge. A second metal layer on a first metal layer is deposited. A first photoresist layer is formed exclusively within the contact hole. The second metal layer is wet etched to recess the second metal layer from sidewalls of the bottom dielectric layer in the contact hole. A second photoresist layer is formed exclusively within the contact hole. The first metal layer is wet etched to recess the first metal layer from the top dielectric layer. The first metal layer extends over the bond pad edge onto the bottom dielectric layer.
    Type: Grant
    Filed: July 18, 2014
    Date of Patent: May 12, 2015
    Assignee: Texas Instruments Incorporated
    Inventors: Jing Wang, Lin Lin, Qiuling Jia, Qi Yang, Jianxin Liu
  • Publication number: 20150008511
    Abstract: A method for forming bond pads on a semiconductor die includes forming a dielectric stack including a bottom and top dielectric layer having a contact hole therethrough over a bond pad. An outer edge of the bottom dielectric layer within the contact hole extends beyond an outer edge of the top dielectric layer to define a bond pad edge. A second metal layer on a first metal layer is deposited. A first photoresist layer is formed exclusively within the contact hole. The second metal layer is wet etched to recess the second metal layer from sidewalls of the bottom dielectric layer in the contact hole. A second photoresist layer is formed exclusively within the contact hole. The first metal layer is wet etched to recess the first metal layer from the top dielectric layer. The first metal layer extends over the bond pad edge onto the bottom dielectric layer.
    Type: Application
    Filed: July 18, 2014
    Publication date: January 8, 2015
    Inventors: JING WANG, LIN LIN, QIULING JIA, QI YANG, JIANXIN LIU
  • Patent number: 8815730
    Abstract: A method for forming bond pads on a semiconductor die includes forming a dielectric stack including a bottom and top dielectric layer having a contact hole therethrough over a bond pad. An outer edge of the bottom dielectric layer within the contact hole extends beyond an outer edge of the top dielectric layer to define a bond pad edge. A second metal layer on a first metal layer is deposited. A first photoresist layer is formed exclusively within the contact hole. The second metal layer is wet etched to recess the second metal layer from sidewalls of the bottom dielectric layer in the contact hole. A second photoresist layer is formed exclusively within the contact hole. The first metal layer is wet etched to recess the first metal layer from the top dielectric layer. The first metal layer extends over the bond pad edge onto the bottom dielectric layer.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: August 26, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Jing Wang, Lin Lin, Qiuling Jia, Qi Yang, Jianxin Liu
  • Patent number: 7517492
    Abstract: Methods for sintering aluminum powder comprise providing aluminum powder and heating the aluminum powder in a nitrogen atmosphere containing a partial pressure of water vapor in the range of about 0.001 kPa to about 0.020 kPa to sinter the aluminum powder to a transverse rupture strength of at least about 13.8 MPa. The aluminum powder is not pressed together by a mechanical force that substantially deforms particles of said aluminum powder either prior to or during the step of heating. Articles comprising sintered aluminum powder. The sintered aluminum powder has a transverse rupture strength of at least about 13.8 MPa. The microstructure of the sintered aluminum powder contains no compositional concentration gradients indicative of the use of a sintering aid and no evidence of particle deformation having occurred by an application of a mechanical force prior to or during the sintering of the aluminum powder.
    Type: Grant
    Filed: December 1, 2003
    Date of Patent: April 14, 2009
    Assignee: The Ex One Company
    Inventor: Jianxin Liu
  • Publication number: 20090007724
    Abstract: The structural integrity of a metal powder body during heat treatment is enhanced by the in situ formation of metal nanoparticles. The nanoparticles bond to one another and to the metal powder particles of the powder body during heat treatment to provide strength to the powder body prior to the operation of the physical phenomena which transform the powder body into a coherent article. The precursor or precursors from which the nanoparticles are derived are preferably metal salts which are added to the powder or powder body in the form of a solution. The use of conventional binders is optional.
    Type: Application
    Filed: November 2, 2004
    Publication date: January 8, 2009
    Inventor: Jianxin Liu
  • Patent number: 7461684
    Abstract: A method for producing a cast article comprises using a porous powder article as a sacrificial pattern. The porous powder article is preferably made using a rapid prototyping process. The porous powder article is used as a sacrificial pattern for a mold into which a molten metal is cast. Some embodiments include a step of proving the porous powder article with a ceramic coating. Methods of making molds and patterns using a porous powder article are also disclosed. The powder comprising the porous powder article may be a metal, ceramic or cermet. In some embodiments, the powder alloys with the molten casting metal. In some other embodiments, the powder and the casting metal form a composite. Sacrificial casting mold patterns comprising porous powder articles and casting molds comprising such sacrificial patterns are also disclosed.
    Type: Grant
    Filed: February 25, 2003
    Date of Patent: December 9, 2008
    Assignee: The Ex One Company, LLC
    Inventors: Jianxin Liu, Michael L. Rynerson
  • Publication number: 20080277837
    Abstract: Gas permeable molds and mold segments having open porosity (60) are disclosed. Blind vents (56) in the mold wall's (54) outside surface (52) allow for an uninterrupted molding surface (62) while enhancing the gas permeability provided by the open porosity (60). Methods of making such gas permeable molds include forming them from sintered material. Methods also include the use of solid free-form fabrication followed by sintering. Also disclosed are unitary structures (150), for use in EPS bead molding, having a steam chest portion (152) with gas impermeable walls (156) and a mold section (154) having a gas permeable mold wall (172) having open porosity (176), and, optionally, open and/or blind vents (180, 178). Methods for making such unitary structures (150) include the use of solid free-form fabrication.
    Type: Application
    Filed: June 28, 2004
    Publication date: November 13, 2008
    Applicant: The Ex One Company
    Inventors: Jianxin Liu, Jeffrey McDaniel, Michael Rynerson, Howard Kuhn
  • Publication number: 20070110608
    Abstract: Methods for sintering aluminum powder comprise providing aluminum powder and heating the aluminum powder in a nitrogen atmosphere containing a partial pressure of water vapor in the range of about 0.001 kPa to about 0.020 kPa to sinter the aluminum powder to a transverse rupture strength of at least about 13.8 MPa. The aluminum powder is not pressed together by a mechanical force that substantially deforms particles of said aluminum powder either prior to or during the step of heating. Articles comprising sintered aluminum powder. The sintered aluminum powder has a transverse rupture strength of at least about 13.8 MPa. The microstructure of the sintered aluminum powder contains no compositional concentration gradients indicative of the use of a sintering aid and no evidence of particle deformation having occurred by an application of a mechanical force prior to or during the sintering of the aluminum powder.
    Type: Application
    Filed: December 1, 2003
    Publication date: May 17, 2007
    Inventor: Jianxin Liu
  • Patent number: 7070734
    Abstract: A green article comprising an A-B powder mixture and methods of manufacturing such green articles and corresponding sintered articles are disclosed. The A-B powder mixture consists of a minor volume fraction of a relatively fine powder A and a complementary major volume fraction of a relatively coarse prealloyed powder B wherein the A-B powder mean particle size ratio is at least about 1:5. Metal powder A consists of one or more elemental metals or alloys which has a melting or solidus temperature above the highest sintering temperature at which the A-B powder mixture may be sintered without slumping. Prealloyed metal powder B consists of one or more alloys which are amenable to supersolidus liquid phase sintering. Green articles made from the A-B powder have a wider sintering temperature window than do articles made from prealloyed metal powder B alone.
    Type: Grant
    Filed: March 16, 2004
    Date of Patent: July 4, 2006
    Assignee: The Ex One Company
    Inventors: Jianxin Liu, Michael L. Ryneson
  • Publication number: 20060083652
    Abstract: A green article comprising an A-B powder mixture and methods of manufacturing such green articles and corresponding sintered articles are disclosed. The A-B powder mixture consists of a minor volume fraction of a relatively fine powder A and a complementary major volume fraction of a relatively coarse prealloyed powder B wherein the A-B powder mean particle size ratio is at least about 1:5. Metal powder A consists of one or more elemental metals or alloys which has a melting or solidus temperature above the highest sintering temperature at which the A-B powder mixture may be sintered without slumping. Prealloyed metal powder B consists of one or more alloys which are amenable to supersolidus liquid phase sintering. Green articles made from the A-B powder have a wider sintering temperature window than do articles made from prealloyed metal powder B alone.
    Type: Application
    Filed: March 16, 2004
    Publication date: April 20, 2006
    Inventors: Jianxin Liu, Michael Ryneson
  • Patent number: 6999826
    Abstract: A computer readable memory to direct a computer to improve the perceived audio quality of a speaker included in that computer. The computer readable memory stores a first, second and third set of instructions. The first set of instructions causes the computer to determine the speaker type. The second set of instructions causes the computer to select a set of default filter coefficients for a digital filter based upon the speaker type. Finally, the third set of instructions causes the computer to realize a digital parametric equalizer using a digital filter and the set of default filter coefficients. Thus, the digital filter alters the audio signal that is input to the speaker, thereby improving the perceived quality of the speaker.
    Type: Grant
    Filed: November 18, 1998
    Date of Patent: February 14, 2006
    Assignee: Zoran Corporation
    Inventors: Jian Zhou, Jianxin Liu, Zhengran Li
  • Publication number: 20040140078
    Abstract: A method for producing a cast article comprises using a porous powder article as a sacrificial pattern. The porous powder article is preferably made using a rapid prototyping process. The porous powder article is used as a sacrificial pattern for a mold into which a molten metal is cast. Some embodiments include a step of proving the porous powder article with a ceramic coating. Methods of making molds and patterns using a porous powder article are also disclosed. The powder comprising the porous powder article may be a metal, ceramic or cermet. In some embodiments, the powder alloys with the molten casting metal. In some other embodiments, the powder and the casting metal form a composite. Sacrificial casting mold patterns comprising porous powder articles and casting molds comprising such sacrificial patterns are also disclosed.
    Type: Application
    Filed: May 7, 2003
    Publication date: July 22, 2004
    Inventors: Jianxin Liu, Michael L. Rynerson
  • Patent number: 6746506
    Abstract: A green article comprising an A-B powder mixture and methods of manufacturing such green articles and corresponding sintered articles are disclosed. The A-B powder mixture consists of a minor volume fraction of a relatively fine powder A and a complementary major volume fraction of a relatively coarse prealloyed powder B wherein the A-B powder mean particle size ratio is at least about 1:5. Metal powder A consists of one or more elemental metals or alloys which has a melting or solidus temperature above the highest sintering temperature at which the A-B powder mixture may be sintered without slumping. Prealloyed metal powder B consists of one or more alloys which are amenable to supersolidus liquid phase sintering. Green articles made from the A-B powder have a wider sintering temperature window than do articles made from prealloyed metal powder B alone.
    Type: Grant
    Filed: July 12, 2002
    Date of Patent: June 8, 2004
    Assignee: Extrude Hone Corporation
    Inventors: Jianxin Liu, Michael L. Ryneson
  • Patent number: 6724416
    Abstract: An Image Transceiving Telephone with Integrated Digital Camera (ITTDC) for simultaneous transceiving of real-time audio and non-real time image through a Public Switched Telephone Network (PSTN) is disclosed. The ITTDC includes an integrated telephone front end, a PSTN access device, an audio CODEC, an image input device, an image CODEC, an image display device, a local storage for an embedded system control software and associated control and operating parameters and data, an optional local electronic interface, a user-control and a system control including the embedded system control software. The control software further includes an audio sampling and processing means, an image capturing and processing means and a process priority control means allocating, via a real-time audio but non-real time image transfer protocol control, a highest priority to tasks for audio information processing whereas a lower priority to tasks for image information processing.
    Type: Grant
    Filed: October 1, 2002
    Date of Patent: April 20, 2004
    Inventor: Jianxin Liu
  • Publication number: 20040061773
    Abstract: An Image Transceiving Telephone with Integrated Digital Camera (ITTDC) for simultaneous transceiving of real-time audio and non-real time image through a Public Switched Telephone Network (PSTN) is disclosed. The ITTDC includes an integrated telephone front end, a PSTN access device, an audio CODEC, an image input device, an image CODEC, an image display device, a local storage for an embedded system control software and associated control and operating parameters and data, an optional local electronic interface, a user-control and a system control including the embedded system control software. The control software further includes an audio sampling and processing means, an image capturing and processing means and a process priority control means allocating, via a real-time audio but non-real time image transfer protocol control, a highest priority to tasks for audio information processing whereas a lower priority to tasks for image information processing.
    Type: Application
    Filed: October 1, 2002
    Publication date: April 1, 2004
    Inventor: Jianxin Liu
  • Publication number: 20040009089
    Abstract: A green article comprising an A-B powder mixture and methods of manufacturing such green articles and corresponding sintered articles are disclosed. The A-B powder mixture consists of a minor volume fraction of a relatively fine powder A and a complementary major volume fraction of a relatively coarse prealloyed powder B wherein the A-B powder mean particle size ratio is at least about 1:5. Metal powder A consists of one or more elemental metals or alloys which has a melting or solidus temperature above the highest sintering temperature at which the A-B powder mixture may be sintered without slumping. Prealloyed metal powder B consists of one or more alloys which are amenable to supersolidus liquid phase sintering. Green articles made from the A-B powder have a wider sintering temperature window than do articles made from prealloyed metal powder B alone.
    Type: Application
    Filed: July 12, 2002
    Publication date: January 15, 2004
    Inventors: Jianxin Liu, Michael L. Ryneson
  • Patent number: 6585930
    Abstract: A binder, and a method of using it in conventional powder metallurgy processes and solid free form fabrication including metal powder, or combinations of metals and ceramics, in which the binder contains at least one carbohydrate as the active binding compound. The carbohydrate generally contains between 6 and about 900 carbon atoms and may be selected from various categories including but not limited to: 1) monosaccharides; 2) disaccharides; 3) trisaccharides; and 4) polysaccharides containing the base sugars identified in 1)-3) above; and 5) hydrolyzed starches in which the hydrolysate contains between about 6-900 carbon atoms, including dextrins such as limit dextrin, hydrolyzed amylose, and hydrolyzed amylopectin. The amount of carbohydrate in the binder solution is generally on the order of about 5-50 grams carbohydrate per 100 ml of carrier solution, more preferably 5-30 g/ml, and most preferably 15 g/ml (or comparable amounts on a dry basis).
    Type: Grant
    Filed: April 25, 2001
    Date of Patent: July 1, 2003
    Assignee: Extrude Hone Corporation
    Inventors: Jianxin Liu, Michael Rynerson