Patents by Inventor Jianying Zhang

Jianying Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110207900
    Abstract: A catalyst for homopolymerizing and copolymerizing propylene and its preparation and use. The catalyst component includes titanium compound containing at least one Ti-halogen bond and at least two kinds of electron donor compounds A and B supported on MgCl2.nROH adduct, wherein the electron donor compound A is a compound of formula (I), the electron donor compound B is ester or ether compound; the molar ratio between compound A and compound B is 0.1-5; the molar ratio between the total amounts of the two kinds of electron donors and MgCl2.nROH is 0.01-1, based on the amount of MgCl2.nROH; and the molar ration between the titanium compound containing Ti-halogen bond and MgCl2.nROH is 1-200. The catalyst has high activity, high stereospecificity and good copolymerization performance. In addition, the morphology of the polymer obtained therefrom is good.
    Type: Application
    Filed: December 2, 2008
    Publication date: August 25, 2011
    Inventors: Jianjun Yi, Baozuo Yin, Chunming Cui, Zhifei Li, Liang Cui, Huashu Li, Weihuan Huang, Jianying Zhang, Li Wang
  • Publication number: 20100184930
    Abstract: An olefin polymerization catalyst and preparation method and use thereof are provided. The catalyst component comprises (1) an active magnesium halide, (2) a titanium compound containing at least one Ti-halide bond supported thereon, and (3) an electron donor selected from the group consisting of one or more sulfonyl-containing compounds having the following formula. There are two methods for preparing such solid catalyst component: I) treating the active magnesium halide (1) particles with alkylaluminum, subsequently adding the electron donor (3), treating it with the solution of titanium compound (2) one or more times; II) adding spherical magnesium chloride alcoholate particles to the solution of titanium compound (2), subsequently adding the electron donor (3), treating it with the solution of titanium compound (2) one or more times. The catalyst system comprises such solid catalyst component, a co-catalyst (alkylaluminum compound) and an external electron donor.
    Type: Application
    Filed: May 15, 2008
    Publication date: July 22, 2010
    Applicant: Petrochina Company Limited
    Inventors: Jianjun Yi, Chunming Cui, Huashu Li, Baozuo Yin, Jianying Zhang, Xiaomei Lang, Linmei Wu
  • Publication number: 20100036411
    Abstract: The present invention relates to compositions and methods for improving outcomes in vascular interventional procedures. In particular, the present invention relates to compositions and methods for improving outcomes in vascular interventional procedures using an anti-no-reflow guide wire that attenuates the “no-reflow” phenomenon that is associated with negative outcomes.
    Type: Application
    Filed: May 28, 2008
    Publication date: February 11, 2010
    Inventors: Mervyn B. Forman, Edwin K. Jackson, Jianying Zhang, Zaichuan Mi
  • Publication number: 20090246164
    Abstract: A method of adhering biological tissue that includes applying a bio-degradable adhesive to the tissue. The adhesive includes a moisture-curable, isocyanate-functional component prepared by reacting (a) a multi-functional isocyanate component and (b) a multi-functional active hydrogen component that includes at least 30% by weight, based upon the total weight of the multi-functional active hydrogen component, of a multi-functional active hydrogen reactant having an equivalent weight less than 100. The ratio R of active hydrogen groups to isocyanate groups can be less than 1.0.
    Type: Application
    Filed: June 1, 2009
    Publication date: October 1, 2009
    Inventors: ERIC J. BECKMAN, JIANYING ZHANG
  • Patent number: 7264823
    Abstract: An adhesive including a mixture of isocyanate capped molecules formed by reacting multi-isocyanate functional molecules with multi-functional precursor molecules including terminal functional groups selected from the group consisting of a hydroxyl group, a primary amino group and a secondary amino group. Preferably, the functional groups are hydroxyl groups. The multi-functional precursor compounds are biocompatible. Multi-amine functional precursors of the multi-isocyanate functional molecules are also biocompatible. As discussed, above, the mixture of molecules preferably has an average isocyanate functionality of at least 2.1 and, more preferably, has an average isocyanate functionality of at least 2.5. As also described above, the mixture of molecules preferably has a viscosity in the range of approximately 1 to approximately 100 centipoise. The mixture of molecules forms a crosslinked polymer network upon contact with the organic tissue in the presence of water.
    Type: Grant
    Filed: February 10, 2003
    Date of Patent: September 4, 2007
    Assignee: University of Pittsburgh
    Inventors: Eric J. Beckman, Michael Buckley, Sudha Agarwal, Jianying Zhang
  • Publication number: 20070190229
    Abstract: A method of adhering biological tissue that includes applying a bio-degradable adhesive to the tissue. The adhesive includes a moisture-curable, isocyanate-functional component prepared by reacting (a) a multi-functional isocyanate component and (b) a multi-functional active hydrogen component that includes at least 30% by weight, based upon the total weight of the multi-functional active hydrogen component, of a multi-functional active hydrogen reactant having an equivalent weight less than 100. The ratio R of active hydrogen groups to isocyanate groups can be less than 1.0.
    Type: Application
    Filed: January 26, 2007
    Publication date: August 16, 2007
    Inventors: Eric Beckman, Jianying Zhang
  • Publication number: 20070160569
    Abstract: An adhesive including a mixture of isocyanate capped molecules formed by reacting multi-isocyanate functional molecules with multi-functional precursor molecules including terminal functional groups selected from the group consisting of a hydroxyl group, a primary amino group and a secondary amino group. Preferably, the functional groups are hydroxyl groups. The multi-functional precursor compounds are biocompatible. Multi-amine functional precursors of the multi-isocyanate functional molecules are also biocompatible. As discussed, above, the mixture of molecules preferably has an average isocyanate functionality of at least 2.1 and, more preferably, has an average isocyanate functionality of at least 2.5. As also described above, the mixture of molecules preferably has a viscosity in the range of approximately 1 to approximately 100 centipoise. The mixture of molecules forms a crosslinked polymer network upon contact with the organic tissue in the presence of water.
    Type: Application
    Filed: March 20, 2007
    Publication date: July 12, 2007
    Inventors: Eric Beckman, Michael Buckley, Sudha Agarwal, Jianying Zhang
  • Publication number: 20070014755
    Abstract: A composition includes at least one biologically active agent covalently attached to a first polymerizing molecule that is adapted to undergo a free radical polymerization. The first polymerizing molecule retains the ability to undergo free radical polymerization after attachment of the bioactive agent thereto. The first polymerizing molecule is preferably biocompatible. The polymerizing molecule can, for example. be dihydroxyphenyl-L-alanine (DOPA) or tyrosine. The composition can also include a second component synthesized by reacting at least one core molecule having a plurality of reactive hydrogen groups with at least one multi-isocyanate functional molecule to create a conjugate including terminal isocyanate groups. The conjugate molecule is reacted with a second polymerizing molecule that is adapted to undergo a free radical polymerization. The second polymerizing molecule includes a reactive hydrogen to react with the isocyanate groups of the conjugate.
    Type: Application
    Filed: July 1, 2006
    Publication date: January 18, 2007
    Inventors: Eric Beckman, Stephen Badylak, Alan Wells, Jianying Zhang, Donald Freytes
  • Publication number: 20050013793
    Abstract: A biodegradable and biocompatible polyurethane composition synthesized by reacting isocyanate groups of at least one multifunctional isocyanate compound with at least one bioactive agent having at least one reactive group —X which is a hydroxyl group (—OH) or an amine group (—NH2). The polyurethane composition is biodegradable within a living organism to biocompatible degradation products including the bioactive agent. Preferably, the released bioactive agent affects at least one of biological activity or chemical activity in the host organism. A biodegradable polyurethane composition includes hard segments and soft segments. Each of the hard segments is preferably derived from a diurea diol or a diester diol and is preferably biodegradable into biomolecule degradation products or into biomolecule degradation products and a biocompatible diol. Another biodegradable polyurethane composition includes hard segments and soft segments.
    Type: Application
    Filed: January 16, 2004
    Publication date: January 20, 2005
    Inventors: Eric Beckman, Jeffrey Hollinger, Bruce Doll, Scott Guelcher, Jianying Zhang
  • Publication number: 20040170597
    Abstract: An adhesive including a mixture of isocyanate capped molecules formed by reacting multi-isocyanate functional molecules with multi-functional precursor molecules including terminal functional groups selected from the group consisting of a hydroxyl group, a primary amino group and a secondary amino group. Preferably, the functional groups are hydroxyl groups. The multi-functional precursor compounds are biocompatible. Multi-aminc functional precursors of the multi-isocyanate functional molecules are also biocompatible. As discussed, above, the mixture of molecules preferably has an average isocyanate functionality of at least 2.1 and, more preferably, has an average isocyanate functionality of at least 2.5. As also described above, the mixture of molecules preferably has a viscosity in the range of approximately 1 to approximately 100 centipoise. The mixture of molecules forms a crosslinked polymer network upon contact with the organic tissue in the presence of water.
    Type: Application
    Filed: February 10, 2003
    Publication date: September 2, 2004
    Inventors: Eric J. Beckman, Michael Buckley, Sudha Agarwal, Jianying Zhang