Patents by Inventor Jifang HE

Jifang HE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11954123
    Abstract: A data processing method is disclosed, the method comprising: after data synchronization, obtaining data offset of synchronous data related to a data integration task to be performed, the data offset representing deviation of the synchronous data from corresponding source data; determining whether the synchronous data is complete based on the data offset; in response to the synchronous data being complete, performing the data integration task to the synchronous data.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: April 9, 2024
    Assignees: Beijing Zhongxiangying Technology Co., Ltd., BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Jifang Duan, Jianzhou Wang, Shaoqing Wu, Decai He, Jianmin Wu
  • Publication number: 20220256128
    Abstract: A camera module is provided. The camera module may be separately used as a camera, or may be applied to a terminal device such as a mobile phone or a tablet computer, or a vehicle-mounted device. The camera module includes an optical lens component, a light filtering layer, an image sensor and a drive module. The optical lens component is configured to receive a light beam from a photographed object, and transmit the light beam to the light filtering layer. The light filtering layer is configured to move a position under the drive of the drive module, and respectively transmit light signals filtered at different positions to the image sensor. The image sensor is configured to receive the light signals at the different positions from the light filtering layer, and determine image information based on the light signals at the different positions.
    Type: Application
    Filed: April 28, 2022
    Publication date: August 11, 2022
    Applicant: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Jun Feng, Ming Li, Wenzhe Liao, Hui Yang, Jinghui Xu, Jifang He
  • Patent number: 10666014
    Abstract: A wavelength tunable laser includes: a heating layer, a dielectric layer, reflectors, a transport layer, a support layer, and a substrate layer. The heating layer is located above the transport layer; the transport layer is located above the support layer, and the transport layer includes an upper cladding layer, a waveguide layer, and a lower cladding layer from top to bottom; the reflector is located in the transport layer; the support layer has a protection structure, where the protection structure forms a hollow structure together with the transport layer and the substrate layer, and the hollow structure has a support structure; and the substrate layer is located below the support layer. The heating layer, the reflector, and a part of the transport layer form a suspended structure to prevent heat dissipation. Thus thermal tuning efficiency can be improved, and power consumption can be lowered.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: May 26, 2020
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Jifang He, Hongmin Chen, Hongbing Lei, Xiao Andy Shen
  • Patent number: 10581222
    Abstract: A tunable laser is provided, including a first reflector, a second reflector, a phase adjustment area, a gain area, a first detector, a second detector, and a controller. The phase adjustment area is located between the first reflector and the gain area, the gain area is located between the phase adjustment area and the second reflector, a reflectivity of the first reflector is adjustable, and a reflectivity of the second reflector is adjustable. The first detector is configured to convert an optical signal of the first reflector into a first electrical signal. The second detector is configured to convert an optical signal of the second reflector into a second electrical signal. The controller is configured to adjust at least one of the reflectivity of the first reflector or the reflectivity of the second reflector based on the first electrical signal and the second electrical signal.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: March 3, 2020
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Jifang He, Hongmin Chen, Hongbing Lei, Xiao Andy Shen
  • Patent number: 10326466
    Abstract: The present embodiments provide an analog to digital converter, including a beam splitter, M photodetectors, M amplifier modules, and an encoder. Each output end of the beam splitter is corresponding to an input end of a photodetector, an output end of each photodetector is connected to an input end of an amplifier module, and an output end of each amplifier module is connected to an input end of the encoder. The beam splitter splits an inputted analog optical signal into M optical signals, outputs each optical signal to a corresponding photodetector to convert each optical signal into a current signal, inputs each current signal to a corresponding amplifier module to generate an output voltage, and outputs the output voltage to a corresponding input end of the encoder.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: June 18, 2019
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Yu Cai, Chunhui Zhang, Jifang He
  • Publication number: 20190027896
    Abstract: A wavelength tunable laser includes: a heating layer, a dielectric layer, reflectors, a transport layer, a support layer, and a substrate layer. The heating layer is located above the transport layer; the transport layer is located above the support layer, and the transport layer includes an upper cladding layer, a waveguide layer, and a lower cladding layer from top to bottom; the reflector is located in the transport layer; the support layer has a protection structure, where the protection structure forms a hollow structure together with the transport layer and the substrate layer, and the hollow structure has a support structure; and the substrate layer is located below the support layer. The heating layer, the reflector, and a part of the transport layer form a suspended structure to prevent heat dissipation. Thus thermal tuning efficiency can be improved, and power consumption can be lowered.
    Type: Application
    Filed: September 21, 2018
    Publication date: January 24, 2019
    Inventors: Jifang He, Hongmin Chen, Hongbing Lei, Xiao Andy Shen
  • Publication number: 20180323578
    Abstract: A tunable laser is provided, including a first reflector, a second reflector, a phase adjustment area, a gain area, a first detector, a second detector, and a controller. The phase adjustment area is located between the first reflector and the gain area, the gain area is located between the phase adjustment area and the second reflector, a reflectivity of the first reflector is adjustable, and a reflectivity of the second reflector is adjustable. The first detector is configured to convert an optical signal of the first reflector into a first electrical signal. The second detector is configured to convert an optical signal of the second reflector into a second electrical signal. The controller is configured to adjust at least one of the reflectivity of the first reflector or the reflectivity of the second reflector based on the first electrical signal and the second electrical signal.
    Type: Application
    Filed: July 13, 2018
    Publication date: November 8, 2018
    Inventors: Jifang HE, Hongmin CHEN, Hongbing LEI, Xiao Andy SHEN
  • Patent number: 10101505
    Abstract: A vortex beam device includes: a metal reflector, a low refractive index layer, and multiple elliptical dielectric elements. The low refractive index layer located on the metal reflector. The multiple elliptical dielectric elements are embedded in the low refractive index layer and arranged in an array, major axes of the multiple elliptical dielectric elements are parallel or coincident. The multiple elliptical dielectric elements have a same thickness. A thickness of the low refractive index layer is greater than a thickness of the elliptical dielectric element. An outer surface of each elliptical dielectric element is flush with an outer surface of the low refractive index layer. A refractive index of the low refractive index layer is less than a refractive index of the elliptical dielectric element.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: October 16, 2018
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Jian Wang, Jing Du, Jifang He
  • Publication number: 20170302290
    Abstract: The present embodiments provide an analog to digital converter, including a beam splitter, M photodetectors, M amplifier modules, and an encoder. Each output end of the beam splitter is corresponding to an input end of a photodetector, an output end of each photodetector is connected to an input end of an amplifier module, and an output end of each amplifier module is connected to an input end of the encoder. The beam splitter splits an inputted analog optical signal into M optical signals, outputs each optical signal to a corresponding photodetector to convert each optical signal into a current signal, inputs each current signal to a corresponding amplifier module to generate an output voltage, and outputs the output voltage to a corresponding input end of the encoder.
    Type: Application
    Filed: June 29, 2017
    Publication date: October 19, 2017
    Inventors: Yu Cai, Chunhui Zhang, Jifang He
  • Publication number: 20170212282
    Abstract: A vortex beam device includes: a metal reflector, a low refractive index layer, and multiple elliptical dielectric elements. The low refractive index layer located on the metal reflector. The multiple elliptical dielectric elements are embedded in the low refractive index layer and arranged in an array, major axes of the multiple elliptical dielectric elements are parallel or coincident. The multiple elliptical dielectric elements have a same thickness. A thickness of the low refractive index layer is greater than a thickness of the elliptical dielectric element. An outer surface of each elliptical dielectric element is flush with an outer surface of the low refractive index layer. A refractive index of the low refractive index layer is less than a refractive index of the elliptical dielectric element.
    Type: Application
    Filed: April 7, 2017
    Publication date: July 27, 2017
    Applicant: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Jian WANG, Jing DU, Jifang HE
  • Patent number: 9618822
    Abstract: An all-optical information exchange device and method are provided. The all-optical information exchange device includes: a second-order nonlinear optical waveguide, a first optical coupler, a third optical coupler, a fourth optical coupler, a first optical filter, a second optical filter and a first polarization controller; the first optical filter is transmissive to a first wavelength/waveband signal light, and the second optical filter is transmissive to a second wavelength/waveband signal light during use.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: April 11, 2017
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Jian Wang, Jifang He, Hongyan Fu
  • Publication number: 20160195792
    Abstract: An all-optical information exchange device and method are provided. The all-optical information exchange device includes: a second-order nonlinear optical waveguide, a first optical coupler, a third optical coupler, a fourth optical coupler, a first optical filter, a second optical filter and a first polarization controller; the first optical filter is transmissive to a first wavelength/waveband signal light, and the second optical filter is transmissive to a second wavelength/waveband signal light during use.
    Type: Application
    Filed: March 11, 2016
    Publication date: July 7, 2016
    Inventors: Jian WANG, Jifang HE, Hongyan FU