Patents by Inventor Jihong Ren

Jihong Ren has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190173697
    Abstract: A transceiver architecture supports high-speed communication over a signal lane that extends between a high-performance integrated circuit (IC) and one or more relatively low-performance ICs employing less sophisticated transmitters and receivers. The architecture compensates for performance asymmetry between ICs communicating over a bidirectional lane by instantiating relatively complex transmit and receive equalization circuitry on the higher-performance side of the lane. Both the transmit and receive equalization filter coefficients in the higher-performance IC may be adaptively updated based upon the signal response at the receiver of the higher-performance IC.
    Type: Application
    Filed: November 7, 2018
    Publication date: June 6, 2019
    Inventors: Jared L. Zerbe, Fariborz Assaderaghi, Brian S. Leibowitz, Hae-Chang Lee, Jihong Ren, Qi Lin
  • Patent number: 10263761
    Abstract: This disclosure provides a clock recovery circuit for a multi-lane communication system. Local clocks are recovered from the input signals using respective local CDR circuits, and associated CDR error signals are aggregated or otherwise combined. A global recovered clock for shared use by the local CDR circuits is generated at a controllable oscillation frequency as a function of a combination of the error signals from the plurality of receivers. A voltage- or current-controlled delay line can also be used to phase adjust the global recovered clock to mitigate band-limited, lane-correlated, high frequency jitter.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: April 16, 2019
    Assignee: Rambus Inc.
    Inventors: Masum Hossain, Brian Leibowitz, Jihong Ren
  • Publication number: 20190075000
    Abstract: A method is disclosed. The method includes sampling a data signal having a voltage value at an expected edge time of the data signal. A first alpha value is generated, and a second alpha value generated in dependence upon the voltage value. The data signal is adjusted by the first alpha value to derive a first adjusted signal. The data signal is adjusted by the second alpha value to derive a second adjusted signal. The first adjusted signal is sampled to output a first data value while the second adjusted signal is sampled to output a second data value. A selection is made between the first data value and the second data value as a function of a prior received data value to determine a received data value.
    Type: Application
    Filed: August 7, 2018
    Publication date: March 7, 2019
    Inventors: Brian S. Leibowitz, Hae-Chang Lee, Jihong Ren, Ruwan Ratnayake
  • Patent number: 10211841
    Abstract: A low-power, high-performance source-synchronous chip interface which provides rapid turn-on and facilitates high signaling rates between a transmitter and a receiver located on different chips is described in various embodiments. Some embodiments of the chip interface include, among others: a segmented “fast turn-on” bias circuit to reduce power supply ringing during the rapid power-on process; current mode logic clock buffers in a clock path of the chip interface to further reduce the effect of power supply ringing; a multiplying injection-locked oscillator (MILO) clock generator to generate higher frequency clock signals from a reference clock; a digitally controlled delay line which can be inserted in the clock path to mitigate deterministic jitter caused by the MILO clock generator; and circuits for periodically re-evaluating whether it is safe to retime transmit data signals in the reference clock domain directly with the faster clock signals.
    Type: Grant
    Filed: August 2, 2017
    Date of Patent: February 19, 2019
    Assignee: Rambus Inc.
    Inventors: Jared L. Zerbe, Brian S. Leibowitz, Hsuan-Jung Su, John Cronan Eble, III, Barry William Daly, Lei Luo, Teva J. Stone, John Wilson, Jihong Ren, Wayne D. Dettloff
  • Publication number: 20190007189
    Abstract: This disclosure provides a clock recovery circuit for a multi-lane communication system. Local clocks are recovered from the input signals using respective local CDR circuits, and associated CDR error signals are aggregated or otherwise combined. A global recovered clock for shared use by the local CDR circuits is generated at a controllable oscillation frequency as a function of a combination of the error signals from the plurality of receivers. A voltage- or current-controlled delay line can also be used to phase adjust the global recovered clock to mitigate band-limited, lane-correlated, high frequency jitter.
    Type: Application
    Filed: July 11, 2018
    Publication date: January 3, 2019
    Inventors: Masum HOSSAIN, Brian Leibowitz, Jihong Ren
  • Publication number: 20180375694
    Abstract: Devices and methods for adjusting operation of a receiver that includes a continuous time linear equalizer, a decision feedback equalizer, and a feed forward equalizer. Operation of the receiver may be controlled by determining whether the receiver is operating in operation region using frequency responses of the feed forward equalizer at a first frequency and a second frequency and using the frequency responses of the decision feedback equalizer at the first frequency and the second frequency. If the operation is outside the frequency, a parameter of the continuous time linear equalizer is adjusted based on the frequency responses of the feed forward equalizer and the decision feedback equalizer.
    Type: Application
    Filed: June 21, 2017
    Publication date: December 27, 2018
    Inventors: Yu Liao, Wenyi Jin, Jihong Ren
  • Patent number: 10164804
    Abstract: Devices and methods for adjusting operation of a receiver that includes a continuous time linear equalizer, a decision feedback equalizer, and a feed forward equalizer. Operation of the receiver may be controlled by determining whether the receiver is operating in operation region using frequency responses of the feed forward equalizer at a first frequency and a second frequency and using the frequency responses of the decision feedback equalizer at the first frequency and the second frequency. If the operation is outside the frequency, a parameter of the continuous time linear equalizer is adjusted based on the frequency responses of the feed forward equalizer and the decision feedback equalizer.
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: December 25, 2018
    Assignee: INTEL CORPORATION
    Inventors: Yu Liao, Wenyi Jin, Jihong Ren
  • Patent number: 10135647
    Abstract: A transceiver architecture supports high-speed communication over a signal lane that extends between a high-performance integrated circuit (IC) and one or more relatively low-performance ICs employing less sophisticated transmitters and receivers. The architecture compensates for performance asymmetry between ICs communicating over a bidirectional lane by instantiating relatively complex transmit and receive equalization circuitry on the higher-performance side of the lane. Both the transmit and receive equalization filter coefficients in the higher-performance IC may be adaptively updated based upon the signal response at the receiver of the higher-performance IC.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: November 20, 2018
    Assignee: Rambus Inc.
    Inventors: Jared L. Zerbe, Fariborz Assaderaghi, Brian S. Leibowitz, Hae-Chang Lee, Jihong Ren, Qi Lin
  • Publication number: 20180302264
    Abstract: An integrated circuit for supporting a high-speed communications link. The integrated circuit may include equalization and hybrid phase detection circuitry configured to perform clock data recovery (CDR) for high-order pulse amplitude modulated (PAM) signals. The phase detector circuit includes partial oversampling sampling circuitry that generates edge samples an incoming PAM signal and Baud rate sampling circuitry that generates error and data samples on the PAM signals. Edge, data, and error samples may be passed to error minimization circuitry within an adaptation circuit that may dynamically compute contributions to a weighted phase error by oversampling and Baud rate components. The adaptation circuit may use the weighted phase error to adjust the phase of a recovered clock signal used to recover data transmitted through the high speed communications link.
    Type: Application
    Filed: April 17, 2017
    Publication date: October 18, 2018
    Applicant: Intel Corporation
    Inventors: Yu Liao, Wenyi Jin, Shiva Prasad Kotagiri, Jihong Ren
  • Publication number: 20180248718
    Abstract: A transceiver architecture supports high-speed communication over a signal lane that extends between a high-performance integrated circuit (IC) and one or more relatively low-performance ICs employing less sophisticated transmitters and receivers. The architecture compensates for performance asymmetry between ICs communicating over a bidirectional lane by instantiating relatively complex transmit and receive equalization circuitry on the higher-performance side of the lane. Both the transmit and receive equalization filter coefficients in the higher-performance IC may be adaptively updated based upon the signal response at the receiver of the higher-performance IC.
    Type: Application
    Filed: January 23, 2018
    Publication date: August 30, 2018
    Inventors: Jared L. Zerbe, Fariborz Assaderaghi, Brian S. Leibowitz, Hae-Chang Lee, Jihong Ren, Qi Lin
  • Patent number: 10050771
    Abstract: This disclosure provides a clock recovery circuit for a multi-lane communication system. Local clocks are recovered from the input signals using respective local CDR circuits, and associated CDR error signals are aggregated or otherwise combined. A global recovered clock for shared use by the local CDR circuits is generated at a controllable oscillation frequency as a function of a combination of the error signals from the plurality of receivers. A voltage- or current-controlled delay line can also be used to phase adjust the global recovered clock to mitigate band-limited, lane-correlated, high frequency jitter.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: August 14, 2018
    Assignee: Rambus Inc.
    Inventors: Masum Hossain, Brian Leibowitz, Jihong Ren
  • Patent number: 10044530
    Abstract: An integrated circuit (IC) memory controller includes receiver circuitry to receive read data from a memory. The receiver circuitry includes equalization circuitry having at least one tap to apply data level equalization to the read data, and a tap weight adapter circuit. The tap weight adapter circuit adaptively generates a data level tap weight corresponding to the data level equalization from an edge analysis of previously received read data.
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: August 7, 2018
    Assignee: Rambus Inc.
    Inventors: Brian S. Leibowitz, Hae-Chang Lee, Jihong Ren, Ruwan Ratnayake
  • Publication number: 20180083642
    Abstract: A low-power, high-performance source-synchronous chip interface which provides rapid turn-on and facilitates high signaling rates between a transmitter and a receiver located on different chips is described in various embodiments. Some embodiments of the chip interface include, among others: a segmented “fast turn-on” bias circuit to reduce power supply ringing during the rapid power-on process; current mode logic clock buffers in a clock path of the chip interface to further reduce the effect of power supply ringing; a multiplying injection-locked oscillator (MILO) clock generator to generate higher frequency clock signals from a reference clock; a digitally controlled delay line which can be inserted in the clock path to mitigate deterministic jitter caused by the MILO clock generator; and circuits for periodically re-evaluating whether it is safe to retime transmit data signals in the reference clock domain directly with the faster clock signals.
    Type: Application
    Filed: August 2, 2017
    Publication date: March 22, 2018
    Inventors: Jared L. Zerbe, Brian S. Leibowitz, Hsuan-Jung Su, John Cronan Eble, III, Barry William Daly, Lei Luo, Teva J. Stone, John Wilson, Jihong Ren, Wayne D. Dettloff
  • Publication number: 20180054293
    Abstract: This disclosure provides a clock recovery circuit for a multi-lane communication system. Local clocks are recovered from the input signals using respective local CDR circuits, and associated CDR error signals are aggregated or otherwise combined. A global recovered clock for shared use by the local CDR circuits is generated at a controllable oscillation frequency as a function of a combination of the error signals from the plurality of receivers. A voltage- or current-controlled delay line can also be used to phase adjust the global recovered clock to mitigate band-limited, lane-correlated, high frequency jitter.
    Type: Application
    Filed: August 15, 2017
    Publication date: February 22, 2018
    Inventors: Masum HOSSAIN, Brian Leibowitz, Jihong Ren
  • Patent number: 9900189
    Abstract: A transceiver architecture supports high-speed communication over a signal lane that extends between a high-performance integrated circuit (IC) and one or more relatively low-performance ICs employing less sophisticated transmitters and receivers. The architecture compensates for performance asymmetry between ICs communicating over a bidirectional lane by instantiating relatively complex transmit and receive equalization circuitry on the higher-performance side of the lane. Both the transmit and receive equalization filter coefficients in the higher-performance IC may be adaptively updated based upon the signal response at the receiver of the higher-performance IC.
    Type: Grant
    Filed: August 10, 2016
    Date of Patent: February 20, 2018
    Assignee: Rambus Inc.
    Inventors: Jared L. Zerbe, Fariborz Assaderaghi, Brian S. Leibowitz, Hae-Chang Lee, Jihong Ren, Qi Lin
  • Publication number: 20170338979
    Abstract: A receiver is equipped with an adaptive phase-offset controller and associated timing-calibration circuitry that together shift the timing for a data sampler and a digital equalizer. The sample and equalizer timing is shifted to a position with less residual inter-symbol interference (ISI) energy relative to the current symbol. The shifted position may be calculated using a measure of signal quality, such as a receiver bit-error rate or a comparison of filter-tap values, to optimize the timing of data recovery.
    Type: Application
    Filed: August 7, 2017
    Publication date: November 23, 2017
    Inventors: Qi Lin, Brian Leibowitz, Hae-Chang Lee, Jihong Ren, Kyung Suk Oh, Jared L. Zerbe
  • Patent number: 9768947
    Abstract: This disclosure provides a clock recovery circuit for a multi-lane communication system. Local clocks are recovered from the input signals using respective local CDR circuits, and associated CDR error signals are aggregated or otherwise combined. A global recovered clock for shared use by the local CDR circuits is generated at a controllable oscillation frequency as a function of a combination of the error signals from the plurality of receivers. A voltage- or current-controlled delay line can also be used to phase adjust the global recovered clock to mitigate band-limited, lane-correlated, high frequency jitter.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: September 19, 2017
    Assignee: Rambus Inc.
    Inventors: Masum Hossain, Brian Leibowitz, Jihong Ren
  • Patent number: 9748960
    Abstract: A low-power, high-performance source-synchronous chip interface which provides rapid turn-on and facilitates high signaling rates between a transmitter and a receiver located on different chips is described in various embodiments. Some embodiments of the chip interface include, among others: a segmented “fast turn-on” bias circuit to reduce power supply ringing during the rapid power-on process; current mode logic clock buffers in a clock path of the chip interface to further reduce the effect of power supply ringing; a multiplying injection-locked oscillator (MILO) clock generator to generate higher frequency clock signals from a reference clock; a digitally controlled delay line which can be inserted in the clock path to mitigate deterministic jitter caused by the MILO clock generator; and circuits for periodically re-evaluating whether it is safe to retime transmit data signals in the reference clock domain directly with the faster clock signals.
    Type: Grant
    Filed: August 11, 2014
    Date of Patent: August 29, 2017
    Assignee: Rambus Inc.
    Inventors: Jared L. Zerbe, Brian S. Leibowitz, Hsuan-Jung Su, John Cronan Eble, III, Barry William Daly, Lei Luo, Teva J. Stone, John Wilson, Jihong Ren, Wayne D. Dettloff
  • Patent number: 9705708
    Abstract: An integrated circuit for supporting a high-speed communications link is provided. The integrated circuit may include equalization circuitry having a continuous time linear equalizer (CTLE) circuit, a decision feedback equalizer (DFE) circuit, and associated adaptation logic for controlling the CTLE circuit and the DFE circuit. The adaptation logic may include an error minimization adaptation circuit operable to generate at least a first post-cursor value, a signal amplitude detection circuit operable to generate a main cursor value, and a CTLE adaptation circuit configured to compute a ratio between the first post-cursor value and the main cursor value. The CTLE adaptation circuit may compare the computed ratio to predetermined values to determine whether or not to adjust the peaking gain of the CTLE circuit to help minimize inter-symbol interference for signals traveling through the high-speed communications link.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: July 11, 2017
    Assignee: Altera Corporation
    Inventors: Wenyi Jin, Jihong Ren
  • Publication number: 20170134153
    Abstract: This disclosure provides a clock recovery circuit for a multi-lane communication system. Local clocks are recovered from the input signals using respective local CDR circuits, and associated CDR error signals are aggregated or otherwise combined. A global recovered clock for shared use by the local CDR circuits is generated at a controllable oscillation frequency as a function of a combination of the error signals from the plurality of receivers. A voltage- or current-controlled delay line can also be used to phase adjust the global recovered clock to mitigate band-limited, lane-correlated, high frequency jitter.
    Type: Application
    Filed: October 31, 2016
    Publication date: May 11, 2017
    Inventors: Masum Hossain, Brian Leibowitz, Jihong Ren