Patents by Inventor Jillian Elaine Bailie

Jillian Elaine Bailie has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8603432
    Abstract: A method of converting nitrogen oxides in a gas to nitrogen by contacting the nitrogen oxides with a nitrogenous reducing agent in the presence of a zeolite catalyst containing at least one transition metal, wherein the zeolite is a small pore zeolite containing a maximum ring size of eight tetrahedral atoms, wherein the at least one transition metal is selected from the group consisting of Cr, Mn, Fe, Co, Ce, Ni, Cu, Zn, Ga, Mo, Ru, Rh, Pd, Ag, In, Sn, Re, Ir and Pt.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: December 10, 2013
    Inventors: Paul Joseph Andersen, Jillian Elaine Bailie, John Leonello Casci, Hai-Ying Chen, Joseph Michael Fedeyko, Rodney Kok Shin Foo, Raj Rao Rajaram
  • Patent number: 7867299
    Abstract: Methods and apparatus for producing hydrogen with reforming catalysts. The reforming catalysts may be platinum group metals on a support material, and they may be located in a reforming reaction zone of a primary reactor. The support material may be an oxidic support having a ceria and zirconia promoter, or may include a neodymium stabilizer. The support material may also include at least one Group IA, Group IIA, manganese, or iron metal promoter. The primary reactor may have a first and second reforming reaction zones, where upstream catalysts located in the first reforming reaction zone and downstream catalysts located in the second reforming reaction zone may be selected to perform optimally under the conditions in their respective reforming reaction zone.
    Type: Grant
    Filed: March 3, 2005
    Date of Patent: January 11, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Michael Ian Petch, Jonathan Charles Frost, Suzanne Rose Ellis, Jessica Grace Reinkingh, Mark Robert Feaviour, Jillian Elaine Bailie, David Wails, Paul James Millington
  • Publication number: 20100290963
    Abstract: A method of converting nitrogen oxides in a gas to nitrogen by contacting the nitrogen oxides with a nitrogenous reducing agent in the presence of a zeolite catalyst containing at least one transition metal, wherein the zeolite is a small pore zeolite containing a maximum ring size of eight tetrahedral atoms, wherein the at least one transition metal is selected from the group consisting of Cr, Mn, Fe, Co, Ce, Ni, Cu, Zn, Ga, Mo, Ru, Rh, Pd, Ag, In, Sn, Re, Ir and Pt.
    Type: Application
    Filed: April 24, 2008
    Publication date: November 18, 2010
    Applicant: JOHNSON MATTHEY PUBLIC LIMITED COMPANY
    Inventors: Paul Joseph Andersen, Jillian Elaine Bailie, John Leonello Casci, Hai-Ying Chen, Joseph Michael Fedeyko, Rodney Kok Shin Foo, Raj Rao Rajaram
  • Patent number: 7459224
    Abstract: Methods and apparatus for producing hydrogen are provided. The methods and apparatus utilize reforming catalysts in order to produce hydrogen gas. The reforming catalysts may be platinum group metals on a support material, and they may be located in a reforming reaction zone of a primary reactor. The support material may an oxidic support having a ceria zirconia promoter. The support material may be an oxidic support and a neodymium stabilizer. The support material may also be an oxidic support material and at least one Group IA, Group IIA, manganese, or iron metal promoter. The primary reactor may have a first and second reforming reaction zones. Upstream reforming catalysts located in the first reforming reaction zone may be selected to perform optimally under the conditions in the first reforming reaction zone. Downstream reforming catalysts located in the second reforming reaction zone may be selected to perform optimally under the conditions in the second reforming reaction zone.
    Type: Grant
    Filed: November 26, 2002
    Date of Patent: December 2, 2008
    Assignee: General Motors Corporation
    Inventors: Michael Ian Petch, Mark Robert Feaviour, Suzanne Rose Ellis, Jillian Elaine Bailie, David Wails, Paul James Millington
  • Patent number: 7156887
    Abstract: Methods and apparatus for producing hydrogen are provided. The methods and apparatus utilize reforming catalysts in order to produce hydrogen gas. The reforming catalysts may be platinum group metals on a support material, and they may be located in a reforming reaction zone of a primary reactor. The support material may an oxidic support having a ceria zirconia promoter. The support material may be an oxidic support and a neodymium stabilizer. The support material may also be an oxidic support material and at least one Group IA, Group IIA, manganese, or iron metal promoter. The primary reactor may have a first and second reforming reaction zones. Upstream reforming catalysts located in the first reforming reaction zone may be selected to perform optimally under the conditions in the first reforming reaction zone. Downstream reforming catalysts located in the second reforming reaction zone may be selected to perform optimally under the conditions in the second reforming reaction zone.
    Type: Grant
    Filed: November 26, 2002
    Date of Patent: January 2, 2007
    Assignee: General Motors Corporation
    Inventors: Michael Ian Petch, David Thompsett, Suzanne Rose Ellis, David Wails, Jillian Elaine Bailie, Mark Robert Feaviour, Paul James Millington
  • Patent number: 7105148
    Abstract: Methods and apparatus for producing hydrogen are provided. The methods and apparatus utilize reforming catalysts in order to produce hydrogen gas. The reforming catalysts may be platinum group metals on a support material, and they may be located in a reforming reaction zone of a primary reactor. The support material may an oxidic support having a ceria zirconia promoter. The support material may be an oxidic support and a neodymium stabilizer. The support material may also be an oxidic support material and at least one Group IA, Group IIA, manganese, or iron metal promoter. The primary reactor may have a first and second reforming reaction zones. Upstream reforming catalysts located in the first reforming reaction zone may be selected to perform optimally under the conditions in the first reforming reaction zone. Downstream reforming catalysts located in the second reforming reaction zone may be selected to perform optimally under the conditions in the second reforming reaction zone.
    Type: Grant
    Filed: November 26, 2002
    Date of Patent: September 12, 2006
    Assignee: General Motors Corporation
    Inventors: Michael Ian Petch, Jonathan Charles Frost, Suzanne Rose Ellis, Jessica Grace Reinkingh, Mark Robert Feaviour, Jillian Elaine Bailie, David Wails, Paul James Millington
  • Publication number: 20040102315
    Abstract: A reforming catalyst comprising precious metal particles dispersed on a support material, wherein the precious metal particles comprise rhodium or ruthenium, characterised in that the support material comprises silica, alumina and ceria is disclosed. The catalyst shows improved sulphur tolerance. Catalysed components and fuel processing systems comprising the catalysts, and reforming processes using the catalysts are also disclosed.
    Type: Application
    Filed: November 27, 2002
    Publication date: May 27, 2004
    Inventors: Jillian Elaine Bailie, David Wails, Mark Robert Feaviour, Suzanne Rose Ellis
  • Publication number: 20040101471
    Abstract: Methods and apparatus for producing hydrogen are provided. The methods and apparatus utilize reforming catalysts in order to produce hydrogen gas. The reforming catalysts may be platinum group metals on a support material, and they may be located in a reforming reaction zone of a primary reactor. The support material may an oxidic support having a ceria zirconia promoter. The support material may be an oxidic support and a neodymium stabilizer. The support material may also be an oxidic support material and at least one Group IA, Group IIA, manganese, or iron metal promoter. The primary reactor may have a first and second reforming reaction zones. Upstream reforming catalysts located in the first reforming reaction zone may be selected to perform optimally under the conditions in the first reforming reaction zone. Downstream reforming catalysts located in the second reforming reaction zone may be selected to perform optimally under the conditions in the second reforming reaction zone.
    Type: Application
    Filed: November 26, 2002
    Publication date: May 27, 2004
    Inventors: Michael lan Petch, Jonathan Charles Frost, Suzanne Rose Ellis, Jessica Grace Reinkingh, Mark Robert Feaviour, Jillian Elaine Bailie, David Wails, Paul James Millington