Patents by Inventor Jim Mali

Jim Mali has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8742463
    Abstract: A semiconductor device includes first and second p-type diffusion regions, and first and second n-type diffusion regions that are each electrically connected to a common node. A gate electrode level region is formed in accordance with a virtual grate defined by virtual lines that extend in only a first parallel direction, such that an equal perpendicular spacing exists between adjacent ones of the virtual lines. Conductive features are each defined within any one gate level channel that is uniquely associated with and defined along one of a number of virtual lines of the virtual grate. The conductive features form gate electrodes of first and second PMOS transistor devices, and first and second NMOS transistor devices. The gate electrodes of the first PMOS and second NMOS transistor devices are electrically connected, and the gate electrodes of the second PMOS and first NMOS transistor devices are electrically connected.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: June 3, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 8735944
    Abstract: A semiconductor device includes a cross-coupled transistor configuration formed by first and second PMOS transistors defined over first and second p-type diffusion regions, and by first and second NMOS transistors defined over first and second n-type diffusion regions, with each diffusion region electrically connected to a common node. Gate electrodes of the PMOS and NMOS transistors are formed by conductive features that are each defined within any one gate level channel. At least a portion of the first p-type diffusion region and at least a portion of the second p-type diffusion region are formed over a first common line of extent that extends perpendicular to the first parallel direction. Also, at least a portion of the first n-type diffusion region and at least a portion of the second n-type diffusion region are formed over a second common line of extent that extends perpendicular to the first parallel direction.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: May 27, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 8735995
    Abstract: A first gate level feature forms gate electrodes of a first transistor of a first transistor type and a first transistor of a second transistor type. A second gate level feature forms a gate electrode of a second transistor of the first transistor type. A third gate level feature forms a gate electrode of a second transistor of the second transistor type. The gate electrodes of the second transistors of the first and second transistor types are electrically connected to each other. The gate electrodes of the second transistors of the first and second transistor types are positioned on opposite sides of a gate electrode track along which the gate electrodes of the first transistors of the first and second transistor types are positioned.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 27, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 8729606
    Abstract: Each of first and second PMOS transistors, and first and second NMOS transistors has a respective diffusion terminal with a direct electrical connection to a common node, and has a respective gate electrode defined within any one gate level channel. Each gate level channel is uniquely associated with and defined along one of a number of parallel oriented gate electrode tracks. The first PMOS transistor gate electrode is electrically connected to the second NMOS transistor electrode. The second PMOS transistor gate electrode is electrically connected to the first NMOS transistor gate electrode. The first and second PMOS transistors, and the first and second NMOS transistors together define a cross-coupled transistor configuration having commonly oriented gate electrodes formed from respective rectangular-shaped layout features.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: May 20, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 8729643
    Abstract: A first conductive gate level feature forms a gate electrode of a first transistor of a first transistor type. A second conductive gate level feature forms a gate electrode of a first transistor of a second transistor type. A third conductive gate level feature forms a gate electrode of a second transistor of the first transistor type. A fourth conductive gate level feature forms a gate electrode of a second transistor of the second transistor type. A first contact connects to the first conductive gate level feature over an inner non-diffusion region. The first and fourth conductive gate level features are electrically connected through the first contact. A second contact connects to the third conductive gate level feature over the inner non-diffusion region and is offset from the first contact. The third and second conductive gate level features are electrically connected through the second contact.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 20, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 8701071
    Abstract: A global placement grating (GPG) is defined for a chip level to include a set of parallel and evenly spaced virtual lines. At least one virtual line of the GPG is positioned to intersect each contact that interfaces with the chip level. A number of subgratings are defined. Each subgrating is a set of equally spaced virtual lines of the GPG that supports a common layout shape run length thereon. The layout for the chip level is partitioned into subgrating regions. Each subgrating region has any one of the defined subgratings allocated thereto. Layout shapes placed within a given subgrating region in the chip level are placed in accordance with the subgrating allocated to the given subgrating region. Non-standard layout shape spacings at subgrating region boundaries can be mitigated by layout shape stretching, layout shape insertion, and/or subresolution shape insertion, or can be allowed to exist in the final layout.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: April 15, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Stephen Kornachuk, Jim Mali, Carole Lambert, Scott T. Becker
  • Patent number: 8680583
    Abstract: A semiconductor device includes a cross-coupled transistor configuration formed by first and second PMOS transistors defined over first and second p-type diffusion regions, and by first and second NMOS transistors defined over first and second n-type diffusion regions, with each diffusion region electrically connected to a common node. Gate electrodes of the PMOS and NMOS transistors are formed by conductive features which extend in only a first parallel direction. At least a portion of the first p-type diffusion region and at least a portion of the second p-type diffusion region are formed over a first common line of extent that extends perpendicular to the first parallel direction. Also, at least a portion of the first n-type diffusion region and at least a portion of the second n-type diffusion region are formed over a second common line of extent that extends perpendicular to the first parallel direction.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: March 25, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 8669594
    Abstract: First and second p-type diffusion regions, and first and second n-type diffusion regions are formed in a semiconductor device. Each diffusion region is electrically connected to a common node. Gate electrodes of cross-coupled transistors are defined to extend over the diffusion regions in only a first parallel direction, with each gate electrode fabricated from a respective originating rectangular-shaped layout feature. The first and second p-type diffusion regions are formed in a spaced apart manner relative to the first parallel direction, such that no single line of extent that extends across the substrate perpendicular to the first parallel direction intersects both the first and second p-type diffusion regions. At least a portion of the first n-type diffusion region and at least a portion of the second n-type diffusion region are formed over a common line of extent that extends across the substrate perpendicular to the first parallel direction.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: March 11, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 8669595
    Abstract: A semiconductor device includes conductive features that are each defined within any one gate level channel that is uniquely associated with and defined along one of a number of parallel gate electrode tracks. The conductive features form gate electrodes of first and second PMOS transistor devices, and first and second NMOS transistor devices. The gate electrodes of the first PMOS, second PMOS, first NMOS, and second NMOS transistor devices respectively extend along different gate electrode tracks. A first set of interconnected conductors electrically connect the gate electrodes of the first PMOS and second NMOS transistor devices. A second set of interconnected conductors electrically connect the gate electrodes of the second PMOS and first NMOS transistor devices. The first and second sets of interconnected conductors traverse across each other within different levels of the semiconductor device.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: March 11, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 8592872
    Abstract: A semiconductor device includes first and second p-type diffusion regions, and first and second n-type diffusion regions that are each electrically connected to a common node. Each of a number of conductive features within a gate electrode level region is fabricated from a respective originating rectangular-shaped layout feature, with a centerline of each originating rectangular-shaped layout feature aligned in a parallel manner. The conductive features respectively form gate electrodes of first and second PMOS transistor devices, and first and second NMOS transistor devices. Widths of the first and second p-type diffusion regions are substantially equal, such that the first and second PMOS transistor devices have substantially equal widths. Widths of the first and second n-type diffusion regions are substantially equal, such that the first and second NMOS transistor devices have substantially equal widths.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: November 26, 2013
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 8587034
    Abstract: A semiconductor device includes conductive features within a gate electrode level region that are each fabricated from respective originating rectangular-shaped layout features having its centerline aligned parallel to a first direction. The conductive features form gate electrodes of first and second PMOS transistor devices, and first and second NMOS transistor devices. The gate electrodes of the first PMOS and first NMOS transistor devices extend along a first gate electrode track. The gate electrodes of the second PMOS and second NMOS transistor devices extend along second and third gate electrode tracks, respectively. A first set of interconnected conductors electrically connect the gate electrodes of the first PMOS and second NMOS transistor devices. A second set of interconnected conductors electrically connect the gate electrodes of the second PMOS and first NMOS transistor devices.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: November 19, 2013
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 8581303
    Abstract: A semiconductor device includes first and second p-type diffusion regions, and first and second n-type diffusion regions that are each electrically connected to a common node. Each of a number of conductive features within a gate electrode level region is fabricated from a respective originating rectangular-shaped layout feature having a centerline aligned parallel to a first direction. The conductive features respectively form gate electrodes of first and second PMOS transistor devices, and first and second NMOS transistor devices. The gate electrodes of the first PMOS and second NMOS transistor devices are electrically connected. The gate electrodes of the second PMOS and first NMOS transistor devices are electrically connected. The electrical connection between the gate electrodes of the first PMOS and second NMOS transistor devices is formed in part by one or more electrical conductors present within at least one interconnect level above the gate electrode level region.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: November 12, 2013
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 8581304
    Abstract: A semiconductor device includes conductive features within a gate electrode level region that are each fabricated from respective originating rectangular-shaped layout features having its centerline aligned parallel to a first direction. The conductive features form gate electrodes of first and second PMOS transistor devices, and first and second NMOS transistor devices. The gate electrodes of the first PMOS, second PMOS, first NMOS, and second NMOS transistor devices respectively extend along different gate electrode tracks. A first set of interconnected conductors electrically connect the gate electrodes of the first PMOS and second NMOS transistor devices. A second set of interconnected conductors electrically connect the gate electrodes of the second PMOS and first NMOS transistor devices. The first and second sets of interconnected conductors traverse across each other within different levels of the semiconductor device.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: November 12, 2013
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 8575706
    Abstract: First and second p-type diffusion regions, and first and second n-type diffusion regions are formed in a semiconductor device. Each diffusion region is electrically connected to a common node. Gate electrodes are formed from conductive features that are each defined within any one gate level channel that is uniquely associated with and defined along one of a number of parallel gate electrode tracks. The first and second p-type diffusion regions are formed in a spaced apart manner relative to the first parallel direction, such that no single line of extent that extends across the substrate perpendicular to the first parallel direction intersects both the first and second p-type diffusion regions. At least a portion of the first n-type diffusion region and at least a portion of the second n-type diffusion region are formed over a common line of extent that extends across the substrate perpendicular to the first parallel direction.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: November 5, 2013
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 8569841
    Abstract: A semiconductor device includes first and second p-type diffusion regions, and first and second n-type diffusion regions that are each electrically connected to a common node. Conductive features are each defined within any one gate level channel that is uniquely associated with and defined along one of a number of parallel gate electrode tracks. The conductive features respectively form gate electrodes of first and second PMOS transistor devices, and first and second NMOS transistor devices. Widths of the first and second p-type diffusion regions are different, such that the first and second PMOS transistor devices have different widths. Widths of the first and second n-type diffusion regions are different, such that the first and second NMOS transistor devices have different widths. The first and second PMOS and first and second NMOS transistor devices form a cross-coupled transistor configuration.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: October 29, 2013
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 8564071
    Abstract: A semiconductor device includes a substrate having a plurality of diffusion regions defined therein to form first and second p-type diffusion regions, and first and second n-type diffusion regions, with each of these diffusion regions electrically connected to a common node. The first p-type active area and the second p-type active area are contiguously formed together. The first n-type active area and the second n-type active area are contiguously formed together. Gate electrodes are formed from conductive features that are each defined within any one gate level channel. Each gate level channel is uniquely associated with and defined along one of a number of parallel oriented gate electrode tracks. A first PMOS transistor gate electrode is electrically connected to a second NMOS transistor gate electrode, and a second PMOS transistor gate electrode is electrically connected to a first NMOS transistor gate electrode.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: October 22, 2013
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 8558322
    Abstract: First and second PMOS transistors are defined over first and second p-type diffusion regions. First and second NMOS transistors are defined over first and second n-type diffusion regions. Each diffusion region is electrically connected to a common node. Gate electrodes are formed from conductive features that are each defined within any one gate level channel that is uniquely associated with and defined along one of a number of parallel gate electrode tracks. The first and second p-type diffusion regions are formed in a spaced apart manner, such that no single line of extent that extends perpendicular to the first parallel direction intersects both the first and second p-type diffusion regions. The first and second n-type diffusion regions are formed in a spaced apart manner, such that no single line of extent that extends perpendicular to the first parallel direction intersects both the first and second n-type diffusion regions.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: October 15, 2013
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 8552508
    Abstract: A semiconductor device includes first and second p-type diffusion regions, and first and second n-type diffusion regions that are each electrically connected to a common node. Gate electrodes are formed from conductive features that are each defined within any one gate level channel that is uniquely associated with and defined along one of a number of parallel gate electrode tracks. The gate electrodes include gate electrodes of first and second PMOS transistor devices, and first and second NMOS transistor devices. Widths of the first and second p-type diffusion regions are substantially equal, such that the first and second PMOS transistor devices have substantially equal widths. Widths of the first and second n-type diffusion regions are substantially equal, such that the first and second NMOS transistor devices have substantially equal widths. The first and second PMOS and first and second NMOS transistor devices form a cross-coupled transistor configuration.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: October 8, 2013
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 8552509
    Abstract: A semiconductor device includes conductive features that are each defined within any one gate level channel uniquely associated with and defined along one of a number of parallel gate electrode tracks. The conductive features form gate electrodes of first and second PMOS transistor devices, and first and second NMOS transistor devices. The gate electrodes of the first PMOS and first NMOS transistor devices extend along a first gate electrode track. The gate electrodes of the second PMOS and second NMOS transistor devices extend along second and third gate electrode tracks, respectively. A first set of interconnected conductors electrically connect the gate electrodes of the first PMOS and second NMOS transistor devices. A second set of interconnected conductors electrically connect the gate electrodes of the second PMOS and first NMOS transistor devices. The first and second sets of interconnected conductors traverse across each other within different levels of the semiconductor device.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: October 8, 2013
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Publication number: 20130254732
    Abstract: A global placement grating (GPG) is defined for a chip level to include a set of parallel and evenly spaced virtual lines. At least one virtual line of the GPG is positioned to intersect each contact that interfaces with the chip level. A number of subgratings are defined. Each subgrating is a set of equally spaced virtual lines of the GPG that supports a common layout shape run length thereon. The layout for the chip level is partitioned into subgrating regions. Each subgrating region has any one of the defined subgratings allocated thereto. Layout shapes placed within a given subgrating region in the chip level are placed in accordance with the subgrating allocated to the given subgrating region. Non-standard layout shape spacings at subgrating region boundaries can be mitigated by layout shape stretching, layout shape insertion, and/or subresolution shape insertion, or can be allowed to exist in the final layout.
    Type: Application
    Filed: May 17, 2013
    Publication date: September 26, 2013
    Applicant: Tela Innovations, Inc.
    Inventors: Stephen Kornachuk, Jim Mali, Carole Lambert, Scott T. Becker