Patents by Inventor Jimmy Cheng-Ho Lin

Jimmy Cheng-Ho Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210317532
    Abstract: We found mutations of the R132 residue of isocitrate dehydrogenase 1 (IDH1) in the majority of grade II and III astrocytomas and oligodendrogliomas as well as in gliblastomas that develop from these lower grade lesions. Those tumors without mutations in IDH1 often had mutations at the analogous R172 residue of the closely related IDH2 gene. These findings have important implications for the pathogenesis and diagnosis of malignant gliomas.
    Type: Application
    Filed: November 6, 2020
    Publication date: October 14, 2021
    Inventors: Bert Vogelstein, Kenneth W. Kinzler, D. Williams Parsons, Xiaosong Zhang, Jimmy Cheng-Ho Lin, Rebecca J. Leary, Philipp Angenendt, Nickolas Papadopoulos, Victor Velculescu, Giovanni Parmigiani, Rachel Karchin, Sian Jones, Hai Yan, Darell Bigner, Chien-Tsun Kuan, Gregory J. Riggins
  • Patent number: 10894987
    Abstract: We found mutations of the R132 residue of isocitrate dehydrogenase 1 (IDH1) in the majority of grade II and III astrocytomas and oligodendrogliomas as well as in glioblastomas that develop from these lower grade lesions. Those tumors without mutations in IDH1 often had mutations at the analogous R172 residue of the closely related IDH2 gene. These findings have important implications for the pathogenesis and diagnosis of malignant gliomas.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: January 19, 2021
    Assignees: The Johns Hopkins University, Duke University
    Inventors: Bert Vogelstein, Kenneth W. Kinzler, D. Williams Parsons, Xiaosong Zhang, Jimmy Cheng-Ho Lin, Rebecca J. Leary, Philipp Angenendt, Nickolas Papadopoulos, Victor Velculescu, Giovanni Parmigiani, Rachel Karchin, Sian Jones, Hai Yan, Darell D. Bigner, Chien-Tsun Kuan, Gregory J. Riggins
  • Patent number: 10837064
    Abstract: We found mutations of the R132 residue of isocitrate dehydrogenase 1 (IDH1) in the majority of grade II and III astrocytomas and oligodendrogliomas as well as in gliblastomas that develop from these lower grade lesions. Those tumors without mutations in IDH1 often had mutations at the analogous R172 residue of the closely related IDH2 gene. These findings have important implications for the pathogenesis and diagnosis of malignant gliomas.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: November 17, 2020
    Assignees: The Johns Hopkins University, Duke University
    Inventors: Bert Vogelstein, Kenneth W. Kinzler, D. Williams Parsons, Xiaosong Zhang, Jimmy Cheng-Ho Lin, Rebecca J. Leary, Philipp Angenendt, Nickolas Papadopoulos, Victor Velculescu, Giovanni Parmigiani, Rachel Karchin, Sian Jones, Hai Yan, Darell Bigner, Chien-Tsun Kuan, Gregory J. Riggins
  • Patent number: 10787712
    Abstract: Analysis of 13,023 genes in 11 breast and 11 colorectal cancers revealed that individual tumors accumulate an average of ˜90 mutant genes but that only a subset of these contribute to the neoplastic process. Using stringent criteria to delineate this subset, we identified 189 genes (average of 11 per tumor) that were mutated at significant frequency. The vast majority of these genes were not known to be genetically altered in tumors and are predicted to affect a wide range of cellular functions, including transcription, adhesion, and invasion. These data define the genetic landscape of two human cancer types, provide new targets for diagnostic and therapeutic intervention and monitoring.
    Type: Grant
    Filed: March 19, 2020
    Date of Patent: September 29, 2020
    Assignee: The Johns Hopkins University
    Inventors: Tobias Sjoblom, Sian Jones, D. Williams Parsons, Laura D. Wood, Jimmy Cheng-Ho Lin, Thomas Barber, Diana Mandelker, Bert Vogelstein, Kenneth W. Kinzler, Victor E. Velculescu
  • Publication number: 20200239970
    Abstract: Analysis of 13,023 genes in 11 breast and 11 colorectal cancers revealed that individual tumors accumulate an average of ˜90 mutant genes but that only a subset of these contribute to the neoplastic process. Using stringent criteria to delineate this subset, we identified 189 genes (average of 11 per tumor) that were mutated at significant frequency. The vast majority of these genes were not known to be genetically altered in tumors and are predicted to affect a wide range of cellular functions, including transcription, adhesion, and invasion. These data define the genetic landscape of two human cancer types, provide new targets for diagnostic and therapeutic intervention and monitoring.
    Type: Application
    Filed: March 19, 2020
    Publication date: July 30, 2020
    Inventors: Tobias SJOBLOM, Sian JONES, D. Williams PARSONS, Laura D. WOOD, Jimmy Cheng-Ho LIN, Thomas BARBER, Diana MANDELKER, Bert VOGELSTEIN, Kenneth W. KINZLER, Victor E. VELCULESCU
  • Patent number: 10704108
    Abstract: We found mutations of the R132 residue of isocitrate dehydrogenase 1 (IDH1) in the majority of grade II and III astrocytomas and oligodendrogliomas as well as in gliblastomas that develop from these lower grade lesions. Those tumors without mutations in IDH1 often had mutations at the analogous R172 residue of the closely related IDH2 gene. These findings have important implications for the pathogenesis and diagnosis of malignant gliomas.
    Type: Grant
    Filed: September 17, 2018
    Date of Patent: July 7, 2020
    Assignees: The Johns Hopkins University, Duke University
    Inventors: Bert Vogelstein, Kenneth W. Kinzler, D. Williams Parsons, Xiaosong Zhang, Jimmy Cheng-Ho Lin, Rebecca J. Leary, Philipp Angenendt, Nickolas Papadopoulos, Victor Velculescu, Giovanni Parmigiani, Rachel Karchin, Sian Jones, Hai Yan, Darell Bigner, Chien-Tsun Kuan, Gregory J. Riggins
  • Publication number: 20200048719
    Abstract: Analysis of 13,023 genes in 11 breast and 11 colorectal cancers revealed that individual tumors accumulate an average of ˜90 mutant genes but that only a subset of these contribute to the neoplastic process. Using stringent criteria to delineate this subset, we identified 189 genes (average of 11 per tumor) that were mutated at significant frequency. The vast majority of these genes were not known to be genetically altered in tumors and are predicted to affect a wide range of cellular functions, including transcription, adhesion, and invasion. These data define the genetic landscape of two human cancer types, provide new targets for diagnostic and therapeutic intervention and monitoring.
    Type: Application
    Filed: October 25, 2019
    Publication date: February 13, 2020
    Inventors: Tobias SJOBLOM, Sian JONES, D. Williams PARSONS, Laura D. WOOD, Jimmy Cheng-Ho LIN, Thomas BARBER, Diana MANDELKER, Bert VOGELSTEIN, Kenneth W. KINZLER, Victor E. VELCULESCU
  • Publication number: 20190106752
    Abstract: We found mutations of the R132 residue of isocitrate dehydrogenase 1 (IDH1) in the majority of grade II and III astrocytomas and oligodendrogliomas as well as in gliblastomas that develop from these lower grade lesions. Those tumors without mutations in IDH1 often had mutations at the analogous R172 residue of the closely related IDH2 gene. These findings have important implications for the pathogenesis and diagnosis of malignant gliomas.
    Type: Application
    Filed: September 17, 2018
    Publication date: April 11, 2019
    Inventors: Bert Vogelstein, Kenneth W. Kinzler, D. Williams Parsons, Xiaosong Zhang, Jimmy Cheng-Ho Lin, Rebecca J. Leary, Philipp Angenendt, Nickolas Papadopoulos, Victor Velculescu, Giovanni Parmigiani, Rachel Karchin, Sian Jones, Hai Yan, Darell Bigner, Chien-Tsun Kuan, Gregory J. Riggins
  • Publication number: 20180282821
    Abstract: We found mutations of the R132 residue of isocitrate dehydrogenase 1 (IDH1) in the majority of grade II and III astrocytomas and oligodendrogliomas as well as in gliblastomas that develop from these lower grade lesions. Those tumors without mutations in IDH1 often had mutations at the analogous R172 residue of the closely related IDH2 gene. These findings have important implications for the pathogenesis and diagnosis of malignant gliomas.
    Type: Application
    Filed: March 22, 2018
    Publication date: October 4, 2018
    Inventors: Bert Vogelstein, Kenneth W. Kinzler, D. Williams Parsons, Xiaosong Zhang, Jimmy Cheng-Ho Lin, Rebecca J. Leary, Philipp Angenendt, Nickolas Papadopoulos, Victor Velculescu, Giovanni Parmigiani, Rachel Karchin, Sian Jones, Hai Yan, Darell Bigner, Chien-Tsun Kuan, Gregory J. Riggins
  • Publication number: 20170362659
    Abstract: Analysis of 13,023 genes in 11 breast and 11 colorectal cancers revealed that individual tumors accumulate an average of ˜90 mutant genes but that only a subset of these contribute to the neoplastic process. Using stringent criteria to delineate this subset, we identified 189 genes (average of 11 per tumor) that were mutated at significant frequency. The vast majority of these genes were not known to be genetically altered in tumors and are predicted to affect a wide range of cellular functions, including transcription, adhesion, and invasion. These data define the genetic landscape of two human cancer types, provide new targets for diagnostic and therapeutic intervention and monitoring.
    Type: Application
    Filed: January 24, 2017
    Publication date: December 21, 2017
    Applicant: The Johns Hopkins University
    Inventors: Tobias SJOBLOM, Sian JONES, D. Williams PARSONS, Laura D. WOOD, Jimmy Cheng-Ho LIN, Thomas BARBER, Diana MANDELKER, Bert VOGELSTEIN, Kenneth W. KINZLER, Victor E. VELCULESCU
  • Publication number: 20170081730
    Abstract: We found mutations of the R132 residue of isocitrate dehydrogenase 1 (IDH1) in the majority of grade II and III astrocytomas and oligodendrogliomas as well as in glioblastomas that develop from these lower grade lesions. Those tumors without mutations in IDH1 often had mutations at the analogous R172 residue of the closely related IDH2 gene. These findings have important implications for the pathogenesis and diagnosis of malignant gliomas.
    Type: Application
    Filed: November 16, 2016
    Publication date: March 23, 2017
    Applicants: The Johns Hopkins University, Duke University
    Inventors: Bert Vogelstein, Kenneth W. Kinzler, D. Williams Parsons, Xiaosong Zhang, Jimmy Cheng-Ho Lin, Rebecca J. Leary, Philipp Angenendt, Nickolas Papadopoulos, Victor Velculescu, Giovanni Parmigiani, Rachel Karchin, Sian Jones, Hai Yan, Darell D. Bigner, Chien-Tsun Kuan, Gregory J. Riggins
  • Patent number: 9551037
    Abstract: Analysis of 13,023 genes in 11 breast and 11 colorectal cancers revealed that individual tumors accumulate an average of ˜90 mutant genes but that only a subset of these contribute to the neoplastic process. Using stringent criteria to delineate this subset, we identified 189 genes (average of 11 per tumor) that were mutated at significant frequency. The vast majority of these genes were not known to be genetically altered in tumors and are predicted to affect a wide range of cellular functions, including transcription, adhesion, and invasion. These data define the genetic landscape of two human cancer types, provide new targets for diagnostic and therapeutic intervention and monitoring.
    Type: Grant
    Filed: March 25, 2014
    Date of Patent: January 24, 2017
    Assignee: The Johns Hopkins University
    Inventors: Tobias Sjoblom, Sian Jones, D. Williams Parsons, Laura D. Wood, Jimmy Cheng-Ho Lin, Thomas Barber, Diana Mandelker, Bert Vogelstein, Kenneth W. Kinzler, Victor E. Velculescu
  • Patent number: 9353418
    Abstract: We found mutations of the R132 residue of isocitrate dehydrogenase 1 (IDH1) in the majority of grade II and III astrocytomas and oligodendrogliomas as well as in glioblastomas that develop from these lower grade lesions. Those tumors without mutations in IDH1 often had mutations at the analogous R172 residue of the closely related IDH2 gene. These findings have important implications for the pathogenesis and diagnosis of malignant gliomas.
    Type: Grant
    Filed: December 11, 2013
    Date of Patent: May 31, 2016
    Assignees: The Johns Hopkins University, Duke University
    Inventors: Bert Vogelstein, Kenneth W. Kinzler, D. Williams Parsons, Xiaosong Zhang, Jimmy Cheng-Ho Lin, Rebecca J. Leary, Philipp Angenendt, Nickolas Papadopoulos, Victor Velculescu, Giovanni Parmigiani, Rachel Karchin, Sian Jones, Hai Yan, Darell Bigner, Chien-Tsun Kuan, Gregory J. Riggins
  • Publication number: 20150167095
    Abstract: Analysis of 13,023 genes in 11 breast and 11 colorectal cancers revealed that individual tumors accumulate an average of ˜90 mutant genes but that only a subset of these contribute to the neoplastic process. Using stringent criteria to delineate this subset, we identified 189 genes (average of 11 per tumor) that were mutated at significant frequency. The vast majority of these genes were not known to be genetically altered in tumors and are predicted to affect a wide range of cellular functions, including transcription, adhesion, and invasion. These data define the genetic landscape of two human cancer types, provide new targets for diagnostic and therapeutic intervention and monitoring.
    Type: Application
    Filed: March 25, 2014
    Publication date: June 18, 2015
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Tobias SJOBLOM, Sian JONES, D. Williams PARSONS, Laura D. WOOD, Jimmy Cheng-Ho LIN, Thomas BARBER, Diana MANDELKER, Bert VOGELSTEIN, Kenneth W. KINZLER, Victor E. VELCULESCU
  • Publication number: 20140377754
    Abstract: Human cancer is caused by the accumulation of mutations in oncogenes and tumor suppressor genes. To catalogue the genetic changes that occur during tumorigenesis, we isolated DNA from 11 breast and 11 colorectal tumors and determined the sequences of the genes in the Reference Sequence database in these samples. Based on analysis of exons representing 20,857 transcripts from 18,191 genes, we conclude that the genomic landscapes of breast and colorectal cancers are composed of a handful of commonly mutated gene “mountains” and a much larger number of gene “hills” that are mutated at low frequency. We describe statistical and bioinformatic tools that may help identify mutations with a role in tumorigenesis. These results have implications for understanding the nature and heterogeneity of human cancers and for using personal genomics for tumor diagnosis and therapy.
    Type: Application
    Filed: August 5, 2014
    Publication date: December 25, 2014
    Inventors: Laura D. WOOD, D. Williams PARSONS, Sian JONES, Jimmy Cheng-Ho LIN, Tobias SJOBLOM, Thomas BARBER, Giovanni PARMIGIANI, Victor VELCULESCU, Kenneth W. KINZLER, Bert VOGELSTEIN
  • Publication number: 20140187764
    Abstract: We found mutations of the R132 residue of isocitrate dehydrogenase 1 (IDH1) in the majority of grade II and III astrocytomas and oligodendrogliomas as well as in glioblastomas that develop from these lower grade lesions. Those tumors without mutations in IDH1 often had mutations at the analogous R172 residue of the closely related IDH2 gene. These findings have important implications for the pathogenesis and diagnosis of malignant gliomas.
    Type: Application
    Filed: December 11, 2013
    Publication date: July 3, 2014
    Applicants: Duke University, The Johns Hopkins University
    Inventors: Bert VOGELSTEIN, Kenneth W. KINZLER, D. Williams PARSONS, Xiaosong ZHANG, Jimmy Cheng-Ho LIN, Rebecca J. LEARY, Philipp ANGENENDT, Nickolas PAPADOPOULOS, Victor VELCULESCU, Giovanni PARMIGIANI, Rachel KARCHIN, Sian JONES, Hai YAN, Darell BIGNER, Chien-Tsun KUAN, Gregory J. RIGGINS
  • Patent number: 8685660
    Abstract: We found mutations of the R132 residue of isocitrate dehydrogenase 1 (IDH1) in the majority of grade II and III astrocytomas and oligodendrogliomas as well as in glioblastomas that develop from these lower grade lesions. Those tumors without mutations in IDH1 often had mutations at the analogous R172 residue of the closely related IDH2 gene. These findings have important implications for the pathogenesis and diagnosis of malignant gliomas.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: April 1, 2014
    Assignees: The Johns Hopkins University, Duke University
    Inventors: Bert Vogelstein, Kenneth W. Kinzler, D. Williams Parsons, Xiaosong Zhang, Jimmy Cheng-Ho Lin, Rebecca J. Leary, Philipp Angenendt, Nickolas Papadopoulos, Victor Velculescu, Giovanni Parmigiani, Rachel Karchin, Sian Jones, Hai Yan, Darell Bigner, Chien-Tsun Kuan, Gregory J. Riggins
  • Publication number: 20120202207
    Abstract: We found mutations of the R132 residue of isocitrate dehydrogenase 1 (IDH1) in the majority of grade II and III astrocytomas and oligodendrogliomas as well as in glioblastomas that develop from these lower grade lesions. Those tumors without mutations in IDH1 often had mutations at the analogous R172 residue of the closely related IDH2 gene. These findings have important implications for the pathogenesis and diagnosis of malignant gliomas.
    Type: Application
    Filed: March 6, 2012
    Publication date: August 9, 2012
    Applicants: DUKE UNIVERSITY, THE JOHNS HOPKINS UNIVERSITY
    Inventors: Bert VOGELSTEIN, Kenneth W. KINZLER, D. Williams PARSONS, Xiaosong ZHANG, Jimmy Cheng-Ho LIN, Rebecca J. LEARY, Philipp ANGENENDT, Nickolas PAPADOPOULOS, Victor VELCULESCU, Giovanni PARMIGIANI, Rachel KARCHIN, Sian JONES, Hai YAN, Darell BIGNER, Chien-Tsun KUAN, Gregory J. RIGGINS
  • Publication number: 20120115735
    Abstract: There are currently few therapeutic options for patients with pancreatic cancers and new insights into the pathogenesis of this lethal disease are urgently needed. To this end, we performed a comprehensive analysis of the genes altered in 24 pancreatic tumors. First, we determined the sequences of 23,781 transcripts, representing 20,583 protein-encoding genes, in DNA from these tumors. Second, we searched for homozygous deletions and amplifications using microarrays querying ˜one million single nucleotide polymorphisms in each sample. Third, we analyzed the transcriptomes of the same samples using SAGE and next-generation sequencing-by-synthesis technologies. We found that pancreatic cancers contain an average of 63 genetic alterations, of which 49 are point mutations, 8 are homozygous deletions, and 6 are amplifications. Further analyses revealed a core set of 12 regulatory processes or pathways that were each genetically altered in 70% to 100% of the samples.
    Type: Application
    Filed: September 3, 2009
    Publication date: May 10, 2012
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Bert Vogelstein, Kenneth W. Kinzler, D. Williams Parsons, Sian Jones, Xiaosong Zhang, Jimmy Cheng-Ho Lin, Rebecca J. Leary, Philipp Angenendt, Nickolas Papadopoulos, Victor Velculescu, Giovanni Parmigiani, Rachel Karchin, Scott Kern, Ralph Hruban, James R. Eshleman, Michael Goggins, Alison Klein
  • Publication number: 20110229479
    Abstract: We found mutations of the R132 residue of isocitrate dehydrogenase 1 (IDH1) in the majority of grade II and III astrocytomas and oligodendrogliomas as well as in glioblastomas that develop from these lower grade lesions. Those tumors without mutations in IDH1 often had mutations at the analogous R172 residue of the closely related IDH2 gene. These findings have important implications for the pathogenesis and diagnosis of malignant gliomas.
    Type: Application
    Filed: September 3, 2009
    Publication date: September 22, 2011
    Applicants: THE JOHNS HOPKINS UNIVERSITY, DUKE UNIVERSITY
    Inventors: Bert Vogelstein, Kenneth W. Kinzler, D. Williams Parsons, Xiaosong Zhang, Jimmy Cheng-Ho Lin, Rebecca J. Leary, Philipp Angenendt, Nickolas Papadopoulos, Victor Velculescu, Giovanni Parmigiani, Rachel Karchin, Sian Jones, Hai Yan, Darell Bigner, Chien-Tsun Kuan