Patents by Inventor Jin-Hsiang Liu

Jin-Hsiang Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10418240
    Abstract: A nitride semiconductor structure includes a substrate, a nitride semiconductor layer, and a buffer stack layer between the substrate and the nitride semiconductor layer. The buffer stack layer includes a plurality of metal nitride multilayers repeatedly stacked, wherein each of the metal nitride multilayers consists of a first, a second, and a third metal nitride thin films in sequence, or consists of the first, the third, the second, and the third metal nitride thin films in sequence. The aluminum concentration of the first metal nitride thin film is higher than that of the third metal nitride thin film, and the aluminum concentration of the third metal nitride thin film is higher than that of the second metal nitride thin film.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: September 17, 2019
    Assignee: ELITE ADVANCED LASER CORPORATION
    Inventors: Kun-Chuan Lin, Jin-Hsiang Liu, Yu-Lin Hsiao
  • Publication number: 20190157080
    Abstract: A nitride semiconductor structure includes a substrate, a nitride semiconductor layer, and a buffer stack layer between the substrate and the nitride semiconductor layer. The buffer stack layer includes a plurality of metal nitride multilayers repeatedly stacked, wherein each of the metal nitride multilayers consists of a first, a second, and a third metal nitride thin films in sequence, or consists of the first, the third, the second, and the third metal nitride thin films in sequence. The aluminum concentration of the first metal nitride thin film is higher than that of the third metal nitride thin film, and the aluminum concentration of the third metal nitride thin film is higher than that of the second metal nitride thin film.
    Type: Application
    Filed: January 12, 2018
    Publication date: May 23, 2019
    Applicant: ELITE ADVANCED LASER CORPORATION
    Inventors: Kun-Chuan Lin, Jin-Hsiang Liu, Yu-Lin Hsiao
  • Patent number: 7384808
    Abstract: A method for fabricating a high brightness LED structure is disclosed herein, which comprises at least the following steps. First, a first layered structure is provided by sequentially forming a light generating structure, a non-alloy ohmic contact layer, and a first metallic layer from bottom to top on a side of a first substrate. Then, a second layered structure comprising at least a second substrate is provided. Then, the two-layered structures are wafer-bonded together, with the top side of the second layered structure interfacing with the top side of said first layered structure. The first metallic layer functions as a reflective mirror, which is made of a pure metal or a metal nitride to achieve superior reflectivity, and whose reflective surface does not participate in the wafer-bonding process directly.
    Type: Grant
    Filed: July 12, 2005
    Date of Patent: June 10, 2008
    Assignee: Visual Photonics Epitaxy Co., Ltd.
    Inventors: Jin-Hsiang Liu, Hui-Heng Wang, Kun-Chuan Lin
  • Patent number: 7335924
    Abstract: An LED structure is disclosed herein, which comprises, sequentially arranged in the following order, a light generating structure, a non-alloy ohmic contact layer, a metallic layer, and a substrate. As a reflecting mirror, the metallic layer is made of a pure metal or a metal nitride for achieving superior reflectivity. The non-alloy ohmic contact layer is interposed between the metallic layer and the light generating structure so as to achieve the required ohmic contact. To prevent the metallic layer from intermixing with the non-alloy ohmic contact layer and to maintain the flatness of the reflective surface of the first metallic layer, an optional dielectric layer is interposed between the metallic layer and the non-alloy ohmic contact layer.
    Type: Grant
    Filed: July 12, 2005
    Date of Patent: February 26, 2008
    Assignee: Visual Photonics Epitaxy Co., Ltd.
    Inventors: Jin-Hsiang Liu, Hui-Heng Wang, Kun-Chuan Lin
  • Publication number: 20070181905
    Abstract: A LED structure with enhanced side-emitting capability is provided. An embodiment of The LED structure comprises, on top of a substrate, a metallic layer, a non-alloy ohmic contact layer, a thick transparent layer, a light generating structure, sequentially arranged in the this order from bottom to top. The metallic layer functions a reflective mirror and is made of a pure metal or a metal nitride for superior reflectivity. The non-alloy ohmic contact layer is interposed between the light generating structure and the metallic layer so as to achieve the required low resistance electrical conduction. The thick transparent layer extracts a significant portion of the light to the sides of the LED structure. The thick transparent layer, made of a semiconductor material or a dielectric material having an refractive index between 1.5 to 3.5, could be located either above, below or both above and below the light generating structure.
    Type: Application
    Filed: February 7, 2006
    Publication date: August 9, 2007
    Inventors: Hui-Heng Wang, Jin-Hsiang Liu, Kun-Chuan Lin
  • Publication number: 20070020788
    Abstract: A method for fabricating a high brightness LED structure is disclosed herein, which comprises at least the following steps. First, a first layered structure is provided by sequentially forming a light generating structure, a non-alloy ohmic contact layer, and a first metallic layer from bottom to top on a side of a first substrate. Then, a second layered structure comprising at least a second substrate is provided. Then, the two-layered structures are wafer-bonded together, with the top side of the second layered structure interfacing with the top side of said first layered structure. The first metallic layer functions as a reflective mirror, which is made of a pure metal or a metal nitride to achieve superior reflectivity, and whose reflective surface does not participate in the wafer-bonding process directly.
    Type: Application
    Filed: July 12, 2005
    Publication date: January 25, 2007
    Inventors: Jin-Hsiang Liu, Hui-Heng Wang, Kun-Chuan Lin
  • Publication number: 20070012937
    Abstract: An LED structure is disclosed herein, which comprises, sequentially arranged in the following order, a light generating structure, a non-alloy ohmic contact layer, a metallic layer, and a substrate. As a reflecting mirror, the metallic layer is made of a pure metal or a metal nitride for achieving superior reflectivity. The non-alloy ohmic contact layer is interposed between the metallic layer and the light generating structure so as to achieve the required ohmic contact. To prevent the metallic layer from intermixing with the non-alloy ohmic contact layer and to maintain the flatness of the reflective surface of the first metallic layer, an optional dielectric layer is interposed between the metallic layer and the non-alloy ohmic contact layer.
    Type: Application
    Filed: July 12, 2005
    Publication date: January 18, 2007
    Inventors: Jin-Hsiang Liu, Hui-Heng Wang, Kun-Chuan Lin