Patents by Inventor Jin-Tae Hwang

Jin-Tae Hwang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11955124
    Abstract: An example electronic device includes a housing; a touchscreen display; a microphone; at least one speaker; a button disposed on a portion of the housing or set to be displayed on the touchscreen display; a wireless communication circuit; a processor; and a memory. When a user interface is not displayed on the touchscreen display, the electronic device enables a user to receive a user input through the button, receives user speech through the microphone, and then provides data on the user speech to an external server. An instruction for performing a task is received from the server. When the user interface is displayed on the touchscreen display, the electronic device enables the user to receive the user input through the button, receives user speech through the microphone, and then provides data on the user speech to the external server.
    Type: Grant
    Filed: January 10, 2022
    Date of Patent: April 9, 2024
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sang-Ki Kang, Jang-Seok Seo, Kook-Tae Choi, Hyun-Woo Kang, Jin-Yeol Kim, Chae-Hwan Li, Kyung-Tae Kim, Dong-Ho Jang, Min-Kyung Hwang
  • Patent number: 11876210
    Abstract: A positive electrode active material includes a lithium transition metal oxide, which is doped with doping element M2, wherein M2 includes at least one of Al, Ti, Mg, Zr, W, Y, Sr, Co, F, Si, Na, Cu, Fe, Ca, S, or B, and contains nickel in an amount of 60 mol % or more based on a total number of moles of transition metals excluding lithium, wherein the lithium transition metal oxide has a single particle form, and includes a center portion having a layered structure and a surface portion having a rock-salt structure, and the doping element M2 is included in an amount of 3,580 ppm to 7,620 ppm based on a total weight of the positive electrode active material.
    Type: Grant
    Filed: May 9, 2023
    Date of Patent: January 16, 2024
    Inventors: Tae Gu Yoo, Young Uk Park, Jin Tae Hwang, Wang Mo Jung, Sung Bin Park
  • Patent number: 11837719
    Abstract: A method for preparing a lithium cobalt-based positive electrode active material and a positive electrode active material prepared by the method are provided. The method includes dry-mixing and then heat treating a lithium cobalt oxide particle represented by Formula 1 and one or more lithium metal oxide particle selected from the group consisting of lithium aluminum oxide, lithium zirconium oxide, and lithium titanium oxide.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: December 5, 2023
    Inventors: Chi Ho Jo, Min Kyu You, Sung Bin Park, Hyuck Hur, Jin Tae Hwang, Wang Mo Jung
  • Publication number: 20230387413
    Abstract: A lithium secondary battery and a method of manufacturing the lithium secondary battery are provided. In the lithium secondary battery, a positive electrode additive represented by Formula 1 as an irreversible additive is included in a positive electrode mixture layer, and a ratio (CC/DC) of an initial charge capacity (CC) to an initial discharge capacity (DC) is adjusted within a specific range, thereby reducing the amount of oxygen gas generated in the charging/discharging of the lithium secondary battery, and at the same time, inhibiting self-discharging and improving an operating voltage by improving the open circuit voltage of the battery in initial activation and/or subsequent high-temperature storage. The lithium secondary battery including the same can be effectively used as a power source for mid-to-large devices such as electric vehicles.
    Type: Application
    Filed: June 2, 2022
    Publication date: November 30, 2023
    Applicant: LG Energy Solution, Ltd.
    Inventors: Chi Ho Jo, Wang Mo Jung, Hye Hyeon Kim, Tae Gu Yoo, Jin Tae Hwang, Hae Jung Jung, Jong Wook Heo
  • Publication number: 20230378433
    Abstract: The present technology provides a positive electrode for a lithium secondary battery and a lithium secondary battery including the same. In the positive electrode, a positive electrode additive represented by Formula 1 is contained in a positive electrode mixture layer, and specific X-ray diffraction (XRD) and/or extended X-ray absorption fine-structure (EXAFS) peak(s) are controlled for cobalt remaining in the positive electrode mixture layer after initial charging to SOC 100% to have a specific oxidation number, thereby reducing side reactions caused by the irreversible additive, that is, the positive electrode additive, and reducing the amount of gas such as oxygen generated during charging/discharging. Therefore, the lithium secondary battery has an excellent effect of improving battery safety and electrical performance.
    Type: Application
    Filed: June 2, 2022
    Publication date: November 23, 2023
    Applicant: LG Energy Solution, Ltd.
    Inventors: Chi Ho Jo, Wang Mo Jung, Hye Hyeon Kim, Tae Gu Yoo, Jin Tae Hwang, Hae Jung Jung, Jong Wook Heo
  • Patent number: 11799066
    Abstract: A positive electrode active material includes a lithium transition metal oxide, which is doped with doping element M2, wherein M2 is at least one selected from the group consisting of Al, Ti, Mg, Zr, W, Y, Sr, Co, F, Si, Na, Cu, Fe, Ca, S, and B, and contains nickel in an amount of 60 mol % or more based on a total number of moles of transition metals excluding lithium, wherein the lithium transition metal oxide has a single particle form, and includes a center portion having a layered structure and a surface portion having a rock-salt structure, and the doping element M2 is included in an amount of 3,580 ppm to 7,620 ppm based on a total weight of the positive electrode active material.
    Type: Grant
    Filed: April 1, 2019
    Date of Patent: October 24, 2023
    Inventors: Tae Gu Yoo, Young Uk Park, Jin Tae Hwang, Wang Mo Jung, Sung Bin Park
  • Publication number: 20230275209
    Abstract: A positive electrode active material includes a lithium transition metal oxide, which is doped with doping element M2, wherein M2 includes at least one of Al, Ti, Mg, Zr, W, Y, Sr, Co, F, Si, Na, Cu, Fe, Ca, S, or B, and contains nickel in an amount of 60 mol % or more based on a total number of moles of transition metals excluding lithium, wherein the lithium transition metal oxide has a single particle form, and includes a center portion having a layered structure and a surface portion having a rock-salt structure, and the doping element M2 is included in an amount of 3,580 ppm to 7,620 ppm based on a total weight of the positive electrode active material.
    Type: Application
    Filed: May 9, 2023
    Publication date: August 31, 2023
    Applicant: LG Energy Solution, Ltd.
    Inventors: Tae Gu Yoo, Young Uk Park, Jin Tae Hwang, Wang Mo Jung, Sung Bin Park
  • Publication number: 20230246180
    Abstract: Provided are a positive electrode for a lithium secondary battery and a lithium secondary battery containing the same. The positive electrode includes a positive electrode current collector and a positive electrode mixture layer disposed thereon and includes a positive electrode active material, a positive electrode additive represented by Formula 1 (LipCo(1-q)M1qO4), a conductive material, and a binder. Furthermore, Equation 1 (RLCZO/R0) is 1.55 or less, wherein RLCO represents an electrode sheet resistance when the positive electrode additive represented by Formula 1 is contained in the positive electrode mixture layer, and R0 represents an electrode sheet resistance when the positive electrode additive represented by Formula 1 is not contained in the positive electrode mixture layer. The positive electrode is manufactured using a pre-dispersion containing the positive electrode additive in a positive electrode mixture layer as an irreversible additive.
    Type: Application
    Filed: June 2, 2022
    Publication date: August 3, 2023
    Applicant: LG Energy Solution, Ltd.
    Inventors: Chi Ho Jo, Wang Mo Jung, Hye Hyeon Kim, Tae Gu Yoo, Jin Tae Hwang, Hae Jung Jung, Jong Wook Heo
  • Publication number: 20230223526
    Abstract: A positive electrode material powder including a lithium nickel-based oxide represented by Chemical Formula 1 (LiaNibCocM1dM2eO2) and having a degree of single-particle formation, represented by the following Equation (1), of 0.3 to 0.8: ? i = 1 n 4 ? ? 3 ? R i 3 n × 1 D 50 . In Equation (1), Ri is a radius of the ith grain as measured by subjecting an electrode manufactured using the positive electrode material powder to ion milling and then analyzing the cross section of the electrode by electron backscatter diffraction (EBSD), n is the total number of grains as measured by the EBSD analysis and ranges from 350 to 450, and D50 is a volume-cumulative average particle diameter of the positive electrode material powder as measured using a laser diffraction particle size analyzer.
    Type: Application
    Filed: January 6, 2023
    Publication date: July 13, 2023
    Applicant: LG Energy Solution Ltd.
    Inventors: Jong Wook Heo, Wang Mo Jung, Chi Ho JO, Jin Tae Hwang, Hae Jung Jung, Byung Joon Chae, Tae Gu Yoo, Suk Bae Yoon, Hyeon Jin Cho
  • Publication number: 20230207799
    Abstract: A positive electrode active material is disclosed herein. In some embodiments, a positive electrode active material includes a lithium composite transition metal oxide in the form of at least one of single particles or pseudo-single particles, wherein each single particle consists of one nodule, and each pseudo-single particle is a composite of 30 or fewer nodules, wherein the lithium composite transition metal oxide includes Ni, Co, Mn, and Al, wherein a molar ratio of the number of moles of Ni to the total number of moles of all metal elements except lithium is 0.83 to less than 1, a molar ratio of the number of moles of Co to the number of moles of Mn is 0.5 to less than 1, and a molar ratio ratio of the number of moles of Co to the number of moles of Al is 5 to 15.
    Type: Application
    Filed: December 16, 2022
    Publication date: June 29, 2023
    Applicant: LG Energy Solution, Ltd.
    Inventors: Chi Ho Jo, Wang Mo Jung, Tae Gu Yoo, Jin Tae Hwang, Hae Jung Jung, Jong Wook Heo, Hyeon Jin Cho
  • Patent number: 11637275
    Abstract: The present disclosure relates to a positive electrode material which includes a first positive electrode active material and a second positive electrode active material, wherein the second positive electrode active material has an electrical conductivity of 0.1 ?S/cm to 150 ?S/cm, which is measured after the second positive electrode active material is prepared in the form of a pellet by compressing the second positive electrode active material at a rolling load of 400 kgf to 2,000 kgf, a method of preparing the positive electrode material, and a positive electrode for a lithium secondary battery and a lithium secondary battery which include the positive electrode material.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: April 25, 2023
    Inventors: Young Uk Park, Tae Gu Yoo, Jin Tae Hwang, Wang Mo Jung, Sung Bin Park
  • Publication number: 20230104184
    Abstract: The present disclosure relates to a positive electrode including a positive electrode active material layer formed on a positive electrode collector, wherein the positive electrode active material layer has a two-layer structure including a first positive electrode active material layer, which is formed on the positive electrode collector and includes a first positive electrode active material represented by Formula 1 and a second positive electrode active material represented by Formula 2, and a second positive electrode active material layer which is formed on the first positive electrode active material layer and includes a third positive electrode active material represented by Formula 1, wherein an average particle diameter D50 of the third positive electrode active material is the same or different from an average particle diameter D50 of the first positive electrode active material, and a lithium secondary battery including the same.
    Type: Application
    Filed: December 18, 2020
    Publication date: April 6, 2023
    Applicant: LG Energy Solution, Ltd.
    Inventors: Dong Hwi Kim, Dae Jin Lee, Jin Tae Hwang, Hyeong Il Kim, Seul Ki Chae, Wang Mo Jung, Dong Hun Lee
  • Publication number: 20230086038
    Abstract: A positive electrode active material powder for a lithium secondary battery, which includes a lithium composite transition metal oxide in the form of a single particle consisting of one nodule, or a pseudo-single crystal, which is a composite of 30 or less nodules, where the positive electrode active material powder satisfies Expression 1: 0.5?Dmean33 dpress/D50?3.Where Dmean is an average particle diameter of the nodules as measured using an electron backscatter diffraction (EBSD) pattern analyzer, dpress is a press density measured after 5 g of the positive electrode active material powder is input into a circular mold with a diameter of 2 cm and pressurized at a pressure of 2000 kgf, and D50 is a value corresponding to a cumulative volume of 50% in the particle size distribution of the positive electrode active material powder.
    Type: Application
    Filed: September 9, 2022
    Publication date: March 23, 2023
    Applicant: LG Energy Solution, Ltd.
    Inventors: Jong Wook Heo, Wang Mo Jung, Chi Ho Jo, Tae Gu Yoo, Jin Tae Hwang, Hae Jung Jung, Hyeon Jin Cho
  • Patent number: 11611077
    Abstract: A positive electrode active material for a secondary battery is provided. The positive electrode active material being a lithium cobalt-based oxide includes a doping element M. A lithium cobalt-based oxide particle containing the doping element M in an amount of 3,000 ppm or more, wherein in a bulk portion corresponding to 90% of a core side among the radius from a core of the particle to a surface thereof, the doping element M in the lithium cobalt-based oxide particle is contained at a constant concentration, and in a surface portion from the surface of the particle to 100 nm in a core direction, the doping element M is contained at a concentration equal to or higher than that in the bulk portion and has a concentration in which the concentration thereof is gradient gradually decreased in the core direction from the surface of the particle.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: March 21, 2023
    Inventors: Chi Ho Jo, Min Kyu You, Sung Bin Park, Hyuck Hur, Jin Tae Hwang, Wang Mo Jung
  • Patent number: 11611076
    Abstract: The present invention provides a positive electrode active material precursor for a secondary battery which includes primary particles of Co3O4 or CoOOH, wherein the primary particle contains a doping element in an amount of 3,000 ppm or more, and has an average particle diameter (D50) of 15 ?m or more, and a positive electrode active material for a secondary battery which includes particles of a lithium cobalt-based oxide, wherein the primary particle contains a doping element in an amount of 2,500 ppm or more, and has an average particle diameter (D50) of 15 ?m or more.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: March 21, 2023
    Inventors: Min Kyu You, Chi Ho Jo, Sung Bin Park, Hyuck Hur, Jin Tae Hwang, Wang Mo Jung
  • Publication number: 20230083736
    Abstract: A positive electrode active material and a method for producing the same are disclosed herein. In some embodiments, a positive electrode active material includes a lithium-nickel-based oxide in the form of at least one of single particles or a pseudo-single particles, wherein each single particle consists of one nodule, wherein each pseudo-primary particles is a composite of 30 or fewer nodules, wherein on the surface of the lithium-nickel-based oxide, a number of nickel ions having an oxidation number of +3 or higher is greater than a number of nickel ions having an oxidation number less than +3.
    Type: Application
    Filed: September 9, 2022
    Publication date: March 16, 2023
    Applicant: LG Energy Solution, Ltd.
    Inventors: Jin Tae Hwang, Wang Mo Jung, Chi Ho Jo, Tae Gu Yoo, Hae Jung Jung, Jong Wook Heo, Hyeon Jin Cho
  • Patent number: 11581535
    Abstract: A method for producing a positive electrode active material, a positive electrode active material produced thereby, and a positive electrode and a lithium secondary battery including the same are provided. The method includes preparing a nickel-manganese-aluminum precursor having an atomic fraction of nickel of 90 atm % or greater in all transition metals, and mixing the nickel-manganese-aluminum precursor, a cobalt raw material, and a lithium raw material and heat treating the mixture.
    Type: Grant
    Filed: December 3, 2019
    Date of Patent: February 14, 2023
    Inventors: Jin Tae Hwang, Dong Hun Lee, Sung Bin Park, Hyung Man Cho, Jung Min Han, Wang Mo Jung
  • Publication number: 20230002899
    Abstract: A method of preparing a positive electrode active material for a secondary battery includes preparing a lithium composite transition metal oxide which includes nickel, cobalt, and manganese and contains 60 mol % or more of the nickel among all metals except lithium, adding a moisture absorbent and the lithium composite transition metal oxide into an atomic layer deposition (ALD) reactor, and adding a coating metal precursor into the atomic layer deposition (ALD) reactor and forming a metal oxide coating layer on surfaces of particles of the lithium composite transition metal oxide by atomic layer deposition (ALD).
    Type: Application
    Filed: January 12, 2021
    Publication date: January 5, 2023
    Applicant: LG Energy Solution, Ltd.
    Inventors: Seul Ki Chae, Dae Jin Lee, Dong Hwi Kim, Jin Tae Hwang, Hyeong Il Kim, Wang Mo Jung, Dong Hun Lee
  • Patent number: 11476456
    Abstract: A lithium cobalt-based positive electrode active material is provided. The lithium cobalt-based positive electrode active material includes a core portion including a lithium cobalt-based oxide represented by Formula 1 and a shell portion including a lithium cobalt-based oxide represented by Formula 2, wherein the lithium cobalt-based positive electrode active material includes 2500 ppm or more, preferably 3000 ppm or more of a doping element M based on the total weight of the positive electrode active material. An inflection point does not appear in a voltage profile measured during charging/discharging a secondary battery including the lithium cobalt-based positive electrode active material.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: October 18, 2022
    Inventors: Chi Ho Jo, Min Kyu You, Sung Bin Park, Hyuck Hur, Jin Tae Hwang, Wang Mo Jung
  • Publication number: 20220310984
    Abstract: The present invention relates to an electrode of a double-layer structure including a different type of particulate active material having a different average particle diameter, and a secondary battery including the same, and according to the present invention, the mechanical strength and stability of the electrode increases, and the secondary battery to which they are applied exhibits excellent discharge capacity.
    Type: Application
    Filed: July 29, 2020
    Publication date: September 29, 2022
    Applicant: LG CHEM, LTD.
    Inventors: Dae Jin LEE, Dong Hwi KIM, Jin Tae HWANG, Hyeong Il KIM, Seul Ki CHAE, Wang Mo JUNG, Dong Hun LEE