Patents by Inventor Jinchun Peng

Jinchun Peng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8818676
    Abstract: An engine control system includes a torque request control module to determine a first engine torque request. An artificial neural network (ANN) torque request module determines a second engine torque request using an ANN model. A torque security check module that selectively generates a malfunction signal based on the difference between the first engine torque request and the second engine torque request.
    Type: Grant
    Filed: May 2, 2006
    Date of Patent: August 26, 2014
    Inventors: Jinchun Peng, Timothy J. Hartrey
  • Patent number: 8631783
    Abstract: A control system and method for controlling an engine includes a control module. The control module includes an evaporation control valve module closing a canister purge valve during a system diagnostic. A torque determination module determines a torque change for an end of the system diagnostic. A torque adjustment module changes an engine torque to a changed torque corresponding to the torque change. The evaporation control valve module opens the purge valve at the end of the diagnostic.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: January 21, 2014
    Inventors: Lan Wang, Zhong Wang, Christopher E. Whitney, Jinchun Peng, Ian J. Mac Ewen
  • Patent number: 8364376
    Abstract: A control system for an engine having a catalytic converter includes an energy calculation module that calculates a calculated mass air flow (MAF) of intake air of the engine based on a requested torque and a requested spark timing that correspond to a desired thermal energy of exhaust of the engine, and that determines an expected thermal energy of the exhaust based on the calculated MAF, and an energy residual module that determines a thermal energy residual of the exhaust based on the expected thermal energy and an estimated thermal energy of the exhaust, wherein the estimated thermal energy is based on a measured MAF of the intake air. The control system includes an energy evaluation module that determines a diagnostic result that indicates whether the catalytic converter is operating within a target temperature range based on the thermal energy residual. Related control methods are also provided.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: January 29, 2013
    Inventors: Lan Wang, Robert J. Genslak, Wenbo Wang, Matthew Squire, Jinchun Peng, Edward Stuteville, Kurt D. McLain
  • Patent number: 8355856
    Abstract: An engine control system of a vehicle comprises a reserves module and a fault diagnostic module. The reserves module controls airflow into an engine based on a driver torque request, increases the airflow into the engine when a reserve torque request is received, and outputs a torque output command for the engine based on the driver torque request. The fault diagnostic module selectively diagnoses a fault in the reserves module when the torque output command is greater than a sum of the driver torque request, a predetermined torque, and a load applied to the engine.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: January 15, 2013
    Inventors: Timothy J. Hartrey, Christopher E. Whitney, Jinchun Peng, Cheryl A. Williams, Richard B. Jess
  • Patent number: 8209102
    Abstract: An engine control system comprises a pedal torque request module, a filtering module, a selection module, and an arbitration module. The pedal torque request module determines a first pedal torque request at a first time and determines a second pedal torque request at a second time. The first time is before the second time. The filtering module determines a filtered pedal torque request based on the first pedal torque request, the second pedal torque request, and a filter coefficient. The selection module selects one of the second pedal torque request and the filtered pedal torque request. The arbitration module arbitrates between at least one driver torque request and the selected one of the second pedal torque request and the filtered pedal torque request, outputs a raw driver request based on a result of the arbitration, and controls at least one engine actuator based on the raw driver request.
    Type: Grant
    Filed: January 18, 2010
    Date of Patent: June 26, 2012
    Inventors: Lan Wang, James L. Worthing, Jinchun Peng, Robert D Peavyhouse, Zhong Wang
  • Patent number: 8181627
    Abstract: An engine system includes a throttle actuator module and a torque control module. The throttle actuator module controls a throttle actuator based on a desired throttle area. The torque control module determines an actuator torque. The torque control module determines a rate limited torque, a maximum torque, and a minimum torque based on the actuator torque and a predetermined rate of change. The torque control module determines the desired throttle area based on the actuator torque when the rate limited torque is greater than the maximum torque. The torque control module determines the desired throttle area based on the actuator torque when the rate limited torque is less than the minimum torque.
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: May 22, 2012
    Inventors: Kevin T. Sharples, Mark H. Costin, Timothy J. Hartrey, Christopher E. Whitney, Bahram Younessi, Weixin Yan, Jeffrey M. Kaiser, Richard B. Jess, Joseph M. Stempnik, John A. Jacobs, Jinchun Peng, Leonard G. Wozniak, Vivek Mehta, Bruce A. Rogers
  • Patent number: 8160796
    Abstract: An engine control system comprises a driver axle torque request module (DATRM) and a driver axle torque security module (DATSM). The DATRM determines a pedal torque request based on minimum and maximum scaling torques and a torque scalar. The DATRM determines a raw driver torque request. The DATRM selectively shapes raw driver torque request into a final driver torque request. The DATRM converts the final driver torque request into a first axle torque request. The DATSM selectively diagnoses a fault in the first axle torque request based on a minimum engine torque, the minimum scaling torque, a first comparison of the final driver torque request and the redundant final driver torque request, and a second comparison of the first axle torque request and a redundant axle torque request.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: April 17, 2012
    Inventors: Joseph M. Stempnik, Ronald W. Van Diepen, Jinchun Peng, Mark H. Costin, Bryan D Lehman, Xuehan Kong, Jonathan Packard
  • Patent number: 8160763
    Abstract: Vehicle creep control includes executing a first control scheme to determine a preferred output torque as a first function of the operator input to the brake pedal when the actual direction of vehicle travel is a first direction and the operator-selected direction of vehicle travel is also the first direction, and executing a second control scheme to determine the preferred output torque as a second function of the operator input to the brake pedal when the actual direction of vehicle travel is a second direction and the operator-selected direction of vehicle travel is the first direction.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: April 17, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Goro Tamai, Lan Wang, Jinchun Peng
  • Publication number: 20110178691
    Abstract: An engine control system comprises a pedal torque request module, a filtering module, a selection module, and an arbitration module. The pedal torque request module determines a first pedal torque request at a first time and determines a second pedal torque request at a second time. The first time is before the second time. The filtering module determines a filtered pedal torque request based on the first pedal torque request, the second pedal torque request, and a filter coefficient. The selection module selects one of the second pedal torque request and the filtered pedal torque request. The arbitration module arbitrates between at least one driver torque request and the selected one of the second pedal torque request and the filtered pedal torque request, outputs a raw driver request based on a result of the arbitration, and controls at least one engine actuator based on the raw driver request.
    Type: Application
    Filed: January 18, 2010
    Publication date: July 21, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Lan Wang, James L. Worthing, Jinchun Peng, Robert D. Peavyhouse, Zhong Wang
  • Publication number: 20110114062
    Abstract: A control system and method for controlling an engine includes a control module. The control module includes an evaporation control valve module closing a canister purge valve during a system diagnostic. A torque determination module determines a torque change for an end of the system diagnostic. A torque adjustment module changes an engine torque to a changed torque corresponding to the torque change. The evaporation control valve module opens the purge valve at the end of the diagnostic.
    Type: Application
    Filed: November 18, 2009
    Publication date: May 19, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Lan Wang, Zhong Wang, Christopher E. Whitney, Jinchun Peng, Ian J. Mac Ewen
  • Publication number: 20110046829
    Abstract: Vehicle creep control includes executing a first control scheme to determine a preferred output torque as a first function of the operator input to the brake pedal when the actual direction of vehicle travel is a first direction and the operator-selected direction of vehicle travel is also the first direction, and executing a second control scheme to determine the preferred output torque as a second function of the operator input to the brake pedal when the actual direction of vehicle travel is a second direction and the operator-selected direction of vehicle travel is the first direction.
    Type: Application
    Filed: August 20, 2009
    Publication date: February 24, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Goro Tamai, Lan Wang, Jinchun Peng
  • Publication number: 20100222982
    Abstract: A control system for an engine having a catalytic converter includes an energy calculation module that calculates a calculated mass air flow (MAF) of intake air of the engine based on a requested torque and a requested spark timing that correspond to a desired thermal energy of exhaust of the engine, and that determines an expected thermal energy of the exhaust based on the calculated MAF, and an energy residual module that determines a thermal energy residual of the exhaust based on the expected thermal energy and an estimated thermal energy of the exhaust, wherein the estimated thermal energy is based on a measured MAF of the intake air. The control system includes an energy evaluation module that determines a diagnostic result that indicates whether the catalytic converter is operating within a target temperature range based on the thermal energy residual. Related control methods are also provided.
    Type: Application
    Filed: February 27, 2009
    Publication date: September 2, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Lan Wang, Robert J. Genslak, Wenbo Wang, Matthew Squire, Jinchun Peng, Edward Stutevilie, Kurt D. McLain
  • Publication number: 20100217472
    Abstract: An engine control system comprises a driver axle torque request module (DATRM) and a driver axle torque security module (DATSM). The DATRM determines a pedal torque request based on minimum and maximum scaling torques and a torque scalar. The DATRM determines a raw driver torque request. The DATRM selectively shapes raw driver torque request into a final driver torque request. The DATRM converts the final driver torque request into a first axle torque request. The DATSM selectively diagnoses a fault in the first axle torque request based on a minimum engine torque, the minimum scaling torque, a first comparison of the final driver torque request and the redundant final driver torque request, and a second comparison of the first axle torque request and a redundant axle torque request.
    Type: Application
    Filed: September 23, 2009
    Publication date: August 26, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Joseph M. Stempnik, Ronald W. Van Diepen, Jinchun Peng, Mark H. Costin, Bryan D. Lehman, Xuehan Kong, Jonathan Packard
  • Publication number: 20100075803
    Abstract: An engine system includes a throttle actuator module and a torque control module. The throttle actuator module controls a throttle actuator based on a desired throttle area. The torque control module determines an actuator torque. The torque control module determines a rate limited torque, a maximum torque, and a minimum torque based on the actuator torque and a predetermined rate of change. The torque control module determines the desired throttle area based on the actuator torque when the rate limited torque is greater than the maximum torque. The torque control module determines the desired throttle area based on the actuator torque when the rate limited torque is less than the minimum torque.
    Type: Application
    Filed: February 9, 2009
    Publication date: March 25, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Kevin T. Sharples, Mark H. Costin, Timothy J. Hartrey, Christopher E. Whitney, Bahram Younessi, Weixin Yan, Jeffrey M. Kaiser, Richard B. Jess, Joseph M. Stempnik, John A. Jacobs, Jinchun Peng, Leonard G. Wozniak, Vivek Mehta, Bruce A. Rogers
  • Publication number: 20090299602
    Abstract: An engine control system of a vehicle comprises a reserves module and a fault diagnostic module. The reserves module controls airflow into an engine based on a driver torque request, increases the airflow into the engine when a reserve torque request is received, and outputs a torque output command for the engine based on the driver torque request. The fault diagnostic module selectively diagnoses a fault in the reserves module when the torque output command is greater than a sum of the driver torque request, a predetermined torque, and a load applied to the engine.
    Type: Application
    Filed: February 6, 2009
    Publication date: December 3, 2009
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Timothy J. Hartrey, Christopher E. Whitney, Jinchun Peng, Cheryl A. Williams, Richard B. Jess
  • Patent number: 7600161
    Abstract: A method of verifying the integrity of an arithmetic logic unit (ALU) of a control module includes inputting a first test value into one of a plurality of registers of the ALU and inputting a second test value into remaining registers of the plurality of registers. A first set of operations is performed between the one of the plurality of registers and each of the remaining registers to produce a first set of results. A fault is indicated when one of the first set of results varies from a first predetermined result.
    Type: Grant
    Filed: August 13, 2004
    Date of Patent: October 6, 2009
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Mark H. Costin, Timothy J. Hartrey, Tyrus J. Valascho, Steven P. Sullivan, William Robert Mayhew, Ananth Krishnan, Jinchun Peng
  • Publication number: 20070260389
    Abstract: An engine control system includes a torque request control module to determine a first engine torque request. An artificial neural network (ANN) torque request module determines a second engine torque request using an ANN model. A torque security check module that selectively generates a malfunction signal based on the difference between the first engine torque request and the second engine torque request.
    Type: Application
    Filed: May 2, 2006
    Publication date: November 8, 2007
    Inventors: Jinchun Peng, Timothy Hartrey
  • Publication number: 20060036911
    Abstract: A method of verifying the integrity of an arithmetic logic unit (ALU) of a control module includes inputting a first test value into one of a plurality of registers of the ALU and inputting a second test value into remaining registers of the plurality of registers. A first set of operations is performed between the one of the plurality of registers and each of the remaining registers to produce a first set of results. A fault is indicated when one of the first set of results varies from a first predetermined result.
    Type: Application
    Filed: August 13, 2004
    Publication date: February 16, 2006
    Inventors: Mark Costin, Timothy Hartrey, Tyrus Valascho, Steven Sullivan, William Mayhew, Ananth Krishnan, Jinchun Peng