Patents by Inventor Jingbao Liu

Jingbao Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7316761
    Abstract: Apparatus for plasma etching a layer of material upon a substrate comprising an anode having a first region protruding from a second region, wherein the second region defines a plane and the first region extends from said plane. In one embodiment, at least one solenoid is disposed near the apparatus to magnetize the plasma.
    Type: Grant
    Filed: February 3, 2003
    Date of Patent: January 8, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Kenny L. Doan, Yunsang Kim, Mahmoud Dahimene, Jingbao Liu, Bryan Pu, Hongqing Shan, Don Curry
  • Publication number: 20070249173
    Abstract: A plasma etch process etches high aspect ratio openings in a dielectric film on a workpiece in a reactor having a ceiling electrode overlying the workpiece and an electrostatic chuck supporting the workpiece. The process includes injecting a polymerizing etch process gas through an inner annular zone of gas injection orifices in the ceiling electrode, and evacuating gas from the reactor through a pumping annulus surrounding an edge of the workpiece. The high aspect ratio openings are etched in the dielectric film with etch species derived from the etch process gas while depositing a polymer derived from the etch process gas onto the workpiece, by generating a plasma in the reactor by applying VHF source power to the ceiling electrode and HF and/or LF bias power to an electrode within the electrostatic chuck.
    Type: Application
    Filed: July 21, 2006
    Publication date: October 25, 2007
    Inventors: Jong Mun Kim, Jingbao Liu, Bryan Y. Pu
  • Publication number: 20070247075
    Abstract: A plasma etch reactor for plasma enhanced etching of a workpiece such as a semiconductor wafer includes a housing defining a process chamber, a workpiece support configured to support a workpiece within the chamber during processing and comprising a plasma bias power electrode. The reactor further includes a first process gas inlet coupled to receive predominantly or pure oxygen gas and a second process gas inlet coupled to receive a polymerizing etch process gas. The reactor has a ceiling plasma source power electrode including a center circular gas disperser configured to receive a process gas from the first process gas inlet and to distribute the process gas into the chamber over the workpiece, and an inner annular gas disperser centered around the center gas disperser configured to receive the process gas from the second process gas inlet and to distribute the process gas into the chamber over the workpiece through an inner plurality of injection ports.
    Type: Application
    Filed: July 21, 2006
    Publication date: October 25, 2007
    Inventors: Jong Mun Kim, Jingbao Liu, Bryan Y. Pu
  • Publication number: 20070243714
    Abstract: A method of removing a silicon-containing hard polymeric material from an opening leading to a recessed feature during the plasma etching of said recessed feature into a carbon-containing layer in a semiconductor substrate. The method comprises the intermittent use of a cleaning step within a continuous etching process, where at least one fluorine-containing cleaning agent species is added to already present etchant species of said continuous etching process for a limited time period, wherein the length of time of each cleaning step ranges from about 5% to about 100% of the time length of an etch step which either precedes or follows said cleaning step.
    Type: Application
    Filed: April 18, 2006
    Publication date: October 18, 2007
    Inventors: Taeho Shin, Jingbao Liu, Ajey Joshi, Jong Kim, Wei-Te Wu
  • Publication number: 20070000611
    Abstract: A method and apparatus for controlling characteristics of a plasma in a semiconductor substrate processing chamber using a dual frequency RF source is provided. The method comprises supplying a first RF signal to a first electrode disposed in a processing chamber, and supplying a second RF signal to the first electrode, wherein an interaction between the first and second RF signals is used to control at least one characteristic of a plasma formed in the processing chamber.
    Type: Application
    Filed: September 11, 2006
    Publication date: January 4, 2007
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Steven Shannon, Dennis Grimard, Theodoros Panagopoulos, Daniel Hoffman, Michael Chafin, Troy Detrick, Alexander Paterson, Jingbao Liu, Taeho Shin, Bryan Pu
  • Patent number: 7105442
    Abstract: A method is described for decreasing the critical dimensions of integrated circuit features in which a first masking layer (101) is deposited, patterned and opened in the manner of typical feature etching, and a second masking layer (201) is deposited thereon prior to etching the underlying insulator. The second masking layer is advantageously coated in a substantially conformal manner. Opening the second masking layer while leaving material of the second layer on the sidewalls of the first masking layer as spacers leads to reduction of the feature critical dimension in the underlying insulator. Ashable masking materials, including amorphous carbon and organic materials are removable without CMP, thereby reducing costs. Favorable results are also obtained utilizing more than one masking layer (101, 301) underlying the topmost masking layer (302) from which the spacers are formed. Embodiments are also described in which slope etching replaces the addition of a separate spacer layer.
    Type: Grant
    Filed: May 22, 2002
    Date of Patent: September 12, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Hongching Shan, Kenny L. Doan, Jingbao Liu, Michael S. Barnes, Hong D. Nguyen, Christopher Dennis Bencher, Christopher S. Ngai, Wendy H. Yeh, Eda Tuncel, Claes H. Bjorkman
  • Publication number: 20050090118
    Abstract: A method and apparatus for controlling characteristics of a plasma in a semiconductor substrate processing chamber using a dual frequency RF source is provided. The method comprises supplying a first RF signal to a first electrode disposed in a processing chamber, and supplying a second RF signal to the first electrode, wherein an interaction between the first and second RF signals is used to control at least one characteristic of a plasma formed in the processing chamber.
    Type: Application
    Filed: April 12, 2004
    Publication date: April 28, 2005
    Inventors: Steven Shannon, Dennis Grimard, Theodoros Panagopoulos, Daniel Hoffman, Michael Chafin, Troy Detrick, Alexander Paterson, Jingbao Liu, Taeho Shin, Bryan Pu
  • Publication number: 20040182516
    Abstract: A magnetic field generator which provides greater control over the magnetic field is provided. The magnetic field generator has a plurality of overlapping main magnetic coil sections for forming a magnetic field generally parallel to the top surface of the supporting member. In other embodiments, sub-magnetic coil sections are placed symmetrically around the main magnetic coil sections.
    Type: Application
    Filed: February 13, 2004
    Publication date: September 23, 2004
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Roger Alan Lindley, Jingbao Liu, Bryan Y. Pu, Keiji Horioka
  • Patent number: 6787475
    Abstract: A dielectric plasma etch method particularly useful for assuring that residue does not form in large open pad areas used for monitoring etching of narrow via and contact holes. The main dielectric etch of the via and contact holes uses a highly polymerizing chemistry, preferably of a low-F/C fluorocarbon such as C4F6 in conjunction with O2 and Ar. A short flash step precedes the main plasma etch using a plasma of a gas less polymerizing than the gas of the main etch, and the plasma is not extinguished between the flash and main steps. The flash step may be used to remove an anti-reflection coating (ARC) covering the dielectric layer and use a lean fluorocarbon, such as CF4, perhaps together with O2 and Ar. In the absence of ARC, an argon flash may be used.
    Type: Grant
    Filed: June 5, 2002
    Date of Patent: September 7, 2004
    Inventors: Zhuxu Wang, Jingbao Liu, Claes H. Bjorkman, Bryan Pu
  • Publication number: 20040149394
    Abstract: Apparatus for plasma etching a layer of material upon a substrate comprising an anode having a first region protruding from a second region, wherein the second region defines a plane and the first region extends from said plane. In one embodiment, at least one solenoid is disposed near the apparatus to magnetize the plasma.
    Type: Application
    Filed: February 3, 2003
    Publication date: August 5, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Kenny L. Doan, Yunsang Kim, Mahmoud Dahimene, Jingbao Liu, Bryan Y. Pu, Hongqing Shan
  • Publication number: 20030219988
    Abstract: A method is described for decreasing the critical dimensions of integrated circuit features in which a first masking layer (101) is deposited, patterned and opened in the manner of typical feature etching, and a second masking layer (201) is deposited thereon prior to etching the underlying insulator. The second masking layer is advantageously coated in a substantially conformal manner. Opening the second masking layer while leaving material of the second layer on the sidewalls of the first masking layer as spacers leads to reduction of the feature critical dimension in the underlying insulator. Ashable masking materials, including amorphous carbon and organic materials are removable without CMP, thereby reducing costs. Favorable results are also obtained utilizing more than one masking layer (101, 301) underlying the topmost masking layer (302) from which the spacers are formed. Embodiments are also described in which slope etching replaces the addition of a separate spacer layer.
    Type: Application
    Filed: May 22, 2002
    Publication date: November 27, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Hongqing Shan, Kenny L. Doan, Jingbao Liu, Michael S. Barnes, Huong Thanh Nguyen, Christopher Dennis Bencher, Christopher S. Ngai, Wendy H. Yeh, Eda Tuncel, Claes H. Bjorkman
  • Patent number: 6613689
    Abstract: An oxide etch process practiced in a plasma etch reactor, such as a magnetically enhanced reactive ion etch (MERIE) reactor. The etching gas includes approximately equal amounts of a hydrogen-free fluorocarbon, most preferably C4F6, and oxygen and a much larger amount of argon diluent gas. The magnetic field is preferably maintained above about 50 gauss and the pressure at 40 milliTorr or above with chamber residence times of less than 70 milliseconds. A two-step process may be used for etching holes with very high aspect ratios. In the second step, the magnetic filed and the oxygen flow are reduced. Other fluorocarbons may be substituted which have F/C ratios of less than 2 and more preferably no more than 1.6 or 1.5.
    Type: Grant
    Filed: May 13, 2002
    Date of Patent: September 2, 2003
    Assignee: Applied Materials, Inc
    Inventors: Jingbao Liu, Takehiko Komatsu, Hongqing Shan, Keji Horioka, Bryan Y Pu
  • Publication number: 20030045116
    Abstract: A dielectric plasma etch method particularly useful for assuring that residue does not form in large open pad areas used for monitoring etching of narrow via and contact holes. The main dielectric etch of the via and contact holes uses a highly polymerizing chemistry, preferably of a low-F/C fluorocarbon such as C4F6 in conjunction with O2 and Ar. A short flash step precedes the main plasma etch using a plasma of a gas less polymerizing than the gas of the main etch, and the plasma is not extinguished between the flash and main steps. The flash step may be used to remove an anti-reflection coating (ARC) covering the dielectric layer and use a lean fluorocarbon, such as CF4, perhaps together with O2 and Ar. In the absence of ARC, an argon flash may be used.
    Type: Application
    Filed: June 5, 2002
    Publication date: March 6, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Zhuxu Wang, Jingbao Liu, Claes H. Bjorkman, Bryan Pu
  • Publication number: 20020173162
    Abstract: An oxide etch process practiced in a plasma etch reactor, such as a magnetically enhanced reactive ion etch (MERIE) reactor. The etching gas includes approximately equal amounts of a hydrogen-free fluorocarbon, most preferably C4F6, and oxygen and a much larger amount of argon diluent gas. The magnetic field is preferably maintained above about 50 gauss and the pressure at 40 milliTorr or above with chamber residence times of less than 70 milliseconds. A two-step process may be used for etching holes with very high aspect ratios. In the second step, the magnetic filed and the oxygen flow are reduced. Other fluorocarbons may be substituted which have F/C ratios of less than 2 and more preferably no more than 1.6 or 1.5.
    Type: Application
    Filed: May 13, 2002
    Publication date: November 21, 2002
    Inventors: Jingbao Liu, Takehiko Komatsu, Hongqing Shan, Keiji Horioka, Bryan Y. Pu
  • Patent number: 6451703
    Abstract: An oxide etch process practiced in magnetically enhanced reactive ion etch (MERIE) plasma reactor. The etching gas includes approximately equal amounts of a hydrogen-free fluorocarbon, most preferably C4F6, and oxygen and a much larger amount of argon diluent gas. The magnetic field is preferably maintained above about 50 gauss and the pressure at 40 milliTorr or above with chamber residence times of less than 70 milliseconds. A two-step process may be used for etching holes with very high aspect ratios. In the second step, the magnetic filed and the oxygen flow are reduced. Other fluorocarbons may be substituted which have F/C ratios of less than 2 and more preferably no more than 1.6 or 1.5.
    Type: Grant
    Filed: March 10, 2000
    Date of Patent: September 17, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Jingbao Liu, Takehiko Komatsu, Hongqing Shan, Keji Horioka, Bryan Y Pu
  • Patent number: 6403491
    Abstract: A method for etching a dielectric in a thermally controlled plasma etch chamber with an expanded processing window. The method is adapted to incorporate benefits of a the thermal control and high evacuation capability of the chamber. Etchent gases include hydrocarbons, oxygen and inert gas. Explanation is provided for enablling the use of hexafluoro-1,3-butadiene in a capacitively coupled etch plasma. The method is very useful for creating via, self aligned contacts, dual damascene, and other dielectric etch.
    Type: Grant
    Filed: November 1, 2000
    Date of Patent: June 11, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Jingbao Liu, Judy Wang, Takehiko Komatsu, Bryan Y Pu, Kenny L Doan, Claes Bjorkman, Melody Chang, Yunsang Kim, Hongching Shan, Ruiping Wang