Patents by Inventor Jingdong Chen

Jingdong Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9826596
    Abstract: Devices and methods for controlling brightness of a display backlight are provided. A display backlight controller may control the brightness of the display backlight by changing a duty cycle of a PWM signal that drives the LED current. However, because of LED efficacy and response time, the final output brightness (NITS) may not be linear between 0% to 100%. The disclosed methods may be used to correct the brightness using a predetermined correction factor. Further, the minimum and maximum duty cycle of the output dimming duty cycle may be limited or corrected. In one example, a backlight controller receives an input duty cycle and determines a product of the input duty cycle and a maximum duty cycle to produce a reduced duty cycle. Moreover, the backlight driver may determine a corrected duty cycle using the correction factor. The final output duty cycle and LED current may then be determined.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: November 21, 2017
    Assignee: Apple Inc.
    Inventors: Asif Hussain, Jingdong Chen, Manisha P. Pandya, Adrian E. Sun
  • Patent number: 9749745
    Abstract: A differential microphone array includes a number (M) of microphone sensors for converting sound to a number of electrical signals, and a processor, operably coupled to the microphone sensors, to specify a target differential order (N) for the differential microphone array, and wherein M>N+1, specify a steering matrix D comprising N+1 steering vectors, calculate a respective one of a plurality of linearly specify a steering matrix D comprising N+1 steering vectors-constrained minimum variance filters based on the steering matrix, apply the respective one of the plurality of linearly-constrained minimum variance filters to a respective one of the electrical signals to calculate a respective frequency response of the electrical signals, wherein the respective frequency response comprises a plurality of components associated with a plurality of subbands, and sum the frequency responses of the electrical signals with respect to each subband to calculate an estimated frequency spectrum of the sound.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: August 29, 2017
    Assignee: Northwestern Polytechnical University
    Inventors: Jingdong Chen, Jacob Benesty
  • Publication number: 20170208661
    Abstract: A backlight driver chip for an electronic device includes an input that receives data corresponding to a brightness of a backlight device. The backlight driver chip also includes correction circuitry that determines an amplitude correction factor based at least in part on the data and the brightness of the backlight device. The correction circuitry also determines a corrected brightness based at least in part on the amplitude correction factor. The backlight driver chip further includes an output that provides a current signal that drives the backlight device, wherein the current signal is based at least in part on the corrected brightness.
    Type: Application
    Filed: April 4, 2017
    Publication date: July 20, 2017
    Inventors: Asif Hussain, Jingdong Chen, Manisha P. Pandya, Adrian E. Sun
  • Publication number: 20170148431
    Abstract: Embodiments of end-to-end deep learning systems and methods are disclosed to recognize speech of vastly different languages, such as English or Mandarin Chinese. In embodiments, the entire pipelines of hand-engineered components are replaced with neural networks, and the end-to-end learning allows handling a diverse variety of speech including noisy environments, accents, and different languages. Using a trained embodiment and an embodiment of a batch dispatch technique with GPUs in a data center, an end-to-end deep learning system can be inexpensively deployed in an online setting, delivering low latency when serving users at scale.
    Type: Application
    Filed: November 21, 2016
    Publication date: May 25, 2017
    Applicant: Baidu USA LLC
    Inventors: Bryan Catanzaro, Jingdong Chen, Mike Chrzanowski, Erich Elsen, Jesse Engel, Christopher Fougner, Xu Han, Awni Hannun, Ryan Prenger, Sanjeev Satheesh, Shubhabrata Sengupta, Dani Yogatama, Chong Wang, Jun Zhan, Zhenyao Zhu, Dario Amodei
  • Publication number: 20170148433
    Abstract: Embodiments of end-to-end deep learning systems and methods are disclosed to recognize speech of vastly different languages, such as English or Mandarin Chinese. In embodiments, the entire pipelines of hand-engineered components are replaced with neural networks, and the end-to-end learning allows handling a diverse variety of speech including noisy environments, accents, and different languages. Using a trained embodiment and an embodiment of a batch dispatch technique with GPUs in a data center, an end-to-end deep learning system can be inexpensively deployed in an online setting, delivering low latency when serving users at scale.
    Type: Application
    Filed: November 21, 2016
    Publication date: May 25, 2017
    Applicant: Baidu USA LLC
    Inventors: Bryan Catanzaro, Jingdong Chen, Mike Chrzanowski, Erich Elsen, Jesse Engel, Christopher Fougner, Xu Han, Awni Hannun, Ryan Prenger, Sanjeev Satheesh, Shubhabrata Sengupta, Dani Yogatama, Chong Wang, Jun Zhan, Zhenyao Zhu, Dario Amodei
  • Patent number: 9560463
    Abstract: A system and method relate to receiving, by a processing device, a plurality of sound signals captured at a plurality of microphone sensors, wherein the plurality of sound signals are from a sound source, and wherein a number (M) of the plurality of microphone sensors is greater than three, determining a number (K) of layers for a multistage minimum variance distortionless response (MVDR) beamformer based on the number (M) of the plurality of microphone sensors, wherein the number (K) of layers is greater than one, and wherein each layer of the multistage MVDR beamformer comprises one or more mini-length MVDR beamformers, and executing the multistage MVDR beamformer to the plurality of sound signals to calculate an estimate of the sound source.
    Type: Grant
    Filed: July 7, 2015
    Date of Patent: January 31, 2017
    Assignee: Northwestern Polytechnical University
    Inventors: Jingdong Chen, Chao Pan, Jacob Benesty
  • Publication number: 20160345395
    Abstract: This application relates to systems, methods, and apparatus for controlling a switching frequency of a boost or flyback converter to be above an audible frequency range when operating the boost or flyback converter in a pulse frequency modulation (PFM) mode. The boost or flyback converter uses one or more switches for converting power for a display panel. In order to boost the switching frequency when operating in the PFM mode, the boost or flyback converter can selectively implement certain current and/or voltage limits for pulses that are generated as a result of the switching. The current and/or voltage limits can be set according to a load of the boost or flyback converter, and a correspondence between the current and/or voltage limits and the loads can be stored in a lookup table accessible to the boost or flyback converter.
    Type: Application
    Filed: March 14, 2016
    Publication date: November 24, 2016
    Inventors: Jingdong CHEN, Asif HUSSAIN, Behzad MOHTASHEMI, Manisha P. PANDYA, Mohammad J. NAVABI-SHIRAZI
  • Publication number: 20160277862
    Abstract: A system and method relate to receiving, by a processing device, a plurality of sound signals captured at a plurality of microphone sensors, wherein the plurality of sound signals are from a sound source, and wherein a number (M) of the plurality of microphone sensors is greater than three, determining a number (K) of layers for a multistage minimum variance distortionless response (MVDR) beamformer based on the number (M) of the plurality of microphone sensors, wherein the number (K) of layers is greater than one, and wherein each layer of the multistage MVDR beamformer comprises one or more mini-length MVDR beamformers, and executing the multistage MVDR beamformer to the plurality of sound signals to calculate an estimate of the sound source.
    Type: Application
    Filed: July 7, 2015
    Publication date: September 22, 2016
    Inventors: Jingdong Chen, Chao Pan, Jacob Benesty
  • Patent number: 9439019
    Abstract: A sound signal processing method and apparatus are provided that relate to the audio signal processing field. The method in the present invention includes acquiring, by a mobile terminal, sound signals from a three-dimensional sound field, where at least three microphones are disposed on the mobile terminal and one microphone is configured to receive a sound signal in at least one direction; acquiring, according to the acquired sound signals, a direction of a sound source relative to the mobile terminal; and obtaining spatial audio signals according to the direction of the sound source relative to the mobile terminal and the acquired sound signals, where the spatial audio signals are used for simulating the three-dimensional sound field. The present invention is applicable to a process of collecting and processing signals in a three-dimensional sound field surrounding a terminal.
    Type: Grant
    Filed: August 10, 2015
    Date of Patent: September 6, 2016
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Jingdong Chen, Haiting Li, Deming Zhang
  • Patent number: 9380672
    Abstract: An electronic device may be provided with display circuitry that includes a display timing controller, a backlight driver, a light source, and other associated backlight structures. The backlight control circuitry may generate a control signal having an adjustable duty cycle to the backlight driver. The backlight driver may include a boost converter, a current driver, and backlight control circuitry. The current driver may only be activated when the control signal is high. The backlight control circuitry may output an enable signal to the boost converter. The backlight control circuitry may activate the boost converter a predetermined amount of time before each rising clock edge in the control signal by asserting the enable signal for a longer period of time than when the control signal is high. The control signal and the enable signal may be deasserted at around the same times.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: June 28, 2016
    Assignee: Apple Inc.
    Inventors: Asif Hussain, Jingdong Chen, Mohammad Jafar Navabi-Shirazi, Manisha Pandya
  • Patent number: 9345083
    Abstract: The embodiments discussed herein relate to systems, methods, and apparatus for executing a pulse frequency modulation (PFM) mode of a boost converter in order to ensure that a switching frequency of the boost converter is a above an audible frequency threshold. In this way, a user operating a display device that is controlled by the boost converter will not be disturbed by audible noises generated at the display device. The PFM mode enforces an audible frequency threshold by using control circuitry designed to increase or decrease the frequency of a pulse signal depending on how the frequency of the pulse signal changes over time. The control circuitry can apply an additional load to the boost converter in order to increase the frequency of the pulse signal when the frequency is approaching the audible frequency threshold.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: May 17, 2016
    Assignee: Apple Inc.
    Inventors: Asif Hussain, Behzad Mohtashemi, Mohammad J. Navabi-Shirazi, Jingdong Chen, Manisha P. Pandya
  • Publication number: 20160134969
    Abstract: A differential microphone array includes a number (M) of microphone sensors for converting sound to a number of electrical signals, and a processor, operably coupled to the microphone sensors, to specify a target differential order (N) for the differential microphone array, and wherein M>N+1, specify a steering matrix D comprising N+1 steering vectors, calculate a respective one of a plurality of linearly specify a steering matrix D comprising N+1 steering vectors-constrained minimum variance filters based on the steering matrix, apply the respective one of the plurality of linearly-constrained minimum variance filters to a respective one of the electrical signals to calculate a respective frequency response of the electrical signals, wherein the respective frequency response comprises a plurality of components associated with a plurality of subbands, and sum the frequency responses of the electrical signals with respect to each subband to calculate an estimated frequency spectrum of the sound.
    Type: Application
    Filed: December 28, 2015
    Publication date: May 12, 2016
    Inventors: Jingdong Chen, Jacob Benesty
  • Publication number: 20160066117
    Abstract: A sound signal processing method and apparatus are provided that relate to the audio signal processing field. The method in the present invention includes acquiring, by a mobile terminal, sound signals from a three-dimensional sound field, where at least three microphones are disposed on the mobile terminal and one microphone is configured to receive a sound signal in at least one direction; acquiring, according to the acquired sound signals, a direction of a sound source relative to the mobile terminal; and obtaining spatial audio signals according to the direction of the sound source relative to the mobile terminal and the acquired sound signals, where the spatial audio signals are used for simulating the three-dimensional sound field. The present invention is applicable to a process of collecting and processing signals in a three-dimensional sound field surrounding a terminal.
    Type: Application
    Filed: August 10, 2015
    Publication date: March 3, 2016
    Inventors: Jingdong Chen, Haiting Li, Deming Zhang
  • Patent number: 9237391
    Abstract: A differential microphone array (DMA) is provided that includes a number (M) of microphone sensors for converting a sound to a number of electrical signals and a processor that is configured to apply linearly-constrained minimum variance filters on the electrical signals over a time window to calculate frequency responses of the electrical signals over a plurality of subbands and sum the frequency responses of the electrical signals for each subband to calculate an estimated frequency spectrum of the sound.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: January 12, 2016
    Assignee: Northwestern Polytechnical University
    Inventors: Jacob Benesty, Jingdong Chen
  • Patent number: 9185768
    Abstract: A measured voltage drop across a power-line transistor is used as a sensing element to measure the current and detect an over-current condition for an LED backlight system. An over-current or short condition is detected when the measured voltage drop exceeds a threshold. Accurate detection of the over-current condition is achieved by calibrating the RDS-ON (i.e., internal resistance between drain and source, when transistor is on) of the power-line transistor. In one embodiment, the calibration of RDS-ON is performed by ramping down the threshold from an initial value and using the tripped threshold to determine the actual value for RDS-ON. In another embodiment, the calibration of RDS-ON is performed by using two thresholds, a first threshold to calibrate RDS-ON and a second threshold to detect the over-current condition.
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: November 10, 2015
    Assignee: Apple Inc.
    Inventors: Mohammad J. Navabi-Shirazi, Asif Hussain, Jingdong Chen, Manisha P. Pandya
  • Publication number: 20150163577
    Abstract: A differential microphone array (DMA) is provided that includes a number (M) of microphone sensors for converting a sound to a number of electrical signals and a processor that is configured to apply linearly-constrained minimum variance filters on the electrical signals over a time window to calculate frequency responses of the electrical signals over a plurality of subbands and sum the frequency responses of the electrical signals for each subband to calculate an estimated frequency spectrum of the sound.
    Type: Application
    Filed: December 4, 2012
    Publication date: June 11, 2015
    Applicant: NORTHWESTERN POLYTECHNICAL UNIVERSITY
    Inventors: Jacob Benesty, Jingdong Chen
  • Publication number: 20150115813
    Abstract: The embodiments discussed herein relate to systems, methods, and apparatus for executing a pulse frequency modulation (PFM) mode of a boost converter in order to ensure that a switching frequency of the boost converter is a above an audible frequency threshold. In this way, a user operating a display device that is controlled by the boost converter will not be disturbed by audible noises generated at the display device. The PFM mode enforces an audible frequency threshold by using control circuitry designed to increase or decrease the frequency of a pulse signal depending on how the frequency of the pulse signal changes over time. The control circuitry can apply an additional load to the boost converter in order to increase the frequency of the pulse signal when the frequency is approaching the audible frequency threshold.
    Type: Application
    Filed: September 30, 2014
    Publication date: April 30, 2015
    Inventors: Asif HUSSAIN, Behzad MOHTASHEMI, Mohammad J. NAVABI-SHIRAZI, Jingdong CHEN, Manisha P. PANDYA
  • Patent number: 8976092
    Abstract: A system may include a processor, a graphics controller, and a display. The graphics controller may generate video data to be presented on the display. The display may include a display panel, a backlight unit for providing the display panel with backlight, and a display timing controller for communicating with the graphics controller. The display may be used in non-movie mode and movie mode. The backlight unit may be operated in fixed backlight mode during the non-movie display mode and may be operated in dynamic pixel backlight (DPB) mode during the movie display mode. Backlight level adjustments may be sloped only during the non-movie mode. Backlight level sloping can be handled internally within the backlight unit, can be controlled using pulse width modulation with the display timing controller, and implemented using incremental backlight level adjustments with the processor.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: March 10, 2015
    Assignee: Apple Inc.
    Inventors: Asif Hussain, Jingdong Chen, Mohammad Jafar Navabi-Shirazi, Manisha Pandya, Alejandro L. Ascorra
  • Patent number: 8970200
    Abstract: Systems and methods for light-load efficiency in displays may include a backlight driver circuit that may adjust a gate drive voltage provided to a gate of a metal-oxide-semiconductor field-effect transistor (MOSFET) in the boost converter based on the load conditions of light-emitting diodes used to illuminate the display panel. The backlight driver circuit may also switch between two different voltage sources to further broaden a range of gate drive voltages available to drive the gate of the MOSFET in the boost converter. As a result, the backlight driver circuit may decrease gate drive losses associated with the MOSFET, thereby increasing the efficiency of the boost converter.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: March 3, 2015
    Assignee: Apple Inc.
    Inventors: Asif Hussain, Jingdong Chen, Manisha P. Pandya, Mohammad J. Navabi-Shirazi
  • Publication number: 20140210697
    Abstract: A system may include a processor, a graphics controller, and a display. The graphics controller may generate video data to be presented on the display. The display may include a display panel, a backlight unit for providing the display panel with backlight, and a display timing controller for communicating with the graphics controller. The display may be used in non-movie mode and movie mode. The backlight unit may be operated in fixed backlight mode during the non-movie display mode and may be operated in dynamic pixel backlight (DPB) mode during the movie display mode. Backlight level adjustments may be sloped only during the non-movie mode. Backlight level sloping can be handled internally within the backlight unit, can be controlled using pulse width modulation with the display timing controller, and implemented using incremental backlight level adjustments with the processor.
    Type: Application
    Filed: January 31, 2013
    Publication date: July 31, 2014
    Applicant: Apple Inc.
    Inventors: Asif Hussain, Jingdong Chen, Mohammad Jafar Navabi-Shirazi, Manisha Pandya, Alejandro L. Ascorra