Patents by Inventor Jinxin Yi

Jinxin Yi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230326765
    Abstract: A package substrate manufacturing method includes: providing a bearing plate, manufacturing a pattern and depositing metal to form the first circuit layer; manufacturing a pattern on the first circuit layer, depositing and etching metal to form a metal cavity, laminating a dielectric layer on the metal cavity, and performing thinning to expose the metal cavity; removing the bearing plate, etching the metal cavity to expose the cavity, depositing metal on the cavity and the dielectric layer, and performing pattern manufacturing and etching to form a second circuit layer; forming a first and second solder mask layers correspondingly on the first and second circuit layers, and performing pattern manufacturing on the first solder mask layer or the second solder mask layer to form a bonding pad; and cutting the cavity, the first circuit layer, the second circuit layer, the first solder mask layer and the second solder mask layer.
    Type: Application
    Filed: July 9, 2021
    Publication date: October 12, 2023
    Inventors: Xianming CHEN, Frank BURMEISTER, Lei FENG, Yujun ZHAO, Benxia HUANG, Jinxin YI, Jindong FENG, Yuan LI, Lina JIANG, Edward TENA, Wenshi WANG
  • Publication number: 20230154891
    Abstract: A substrate-based package semiconductor device is provided. The present disclosure further relates to a carrier including a plurality of non-singulated substrate-based package semiconductor devices and to a method of manufacturing the same. In embodiments in accordance with the present disclosure, the lowest insulating layer(s) has/have cavities arranged near and associated with one or more package terminals, and an inner wall of the cavities is covered with a conductive body that connects to the respective associated package terminal. Furthermore, the non-singulated substrate-based package semiconductor devices are separated by a separating region of the substrate, and the cavities are at least partially formed in the separating region.
    Type: Application
    Filed: November 18, 2022
    Publication date: May 18, 2023
    Applicant: NEXPERIA B.V.
    Inventors: YuJun Zhao, JinXin Yi, Yuan Li, Frank Burmeister, Jennifer Schuett, Dicky Tirta Djaja, Qingyuan Tang
  • Patent number: 11556791
    Abstract: Requests for computing resources and other resources can be predicted and managed. For example, a system can determine a baseline prediction indicating a number of requests for an object over a future time-period. The system can then execute a first model to generate a first set of values based on seasonality in the baseline prediction, a second model to generate a second set of values based on short-term trends in the baseline prediction, and a third model to generate a third set of values based on the baseline prediction. The system can select a most accurate model from among the three models and generate an output prediction by applying the set of values output by the most accurate model to the baseline prediction. Based on the output prediction, the system can cause an adjustment to be made to a provisioning process for the object.
    Type: Grant
    Filed: November 3, 2020
    Date of Patent: January 17, 2023
    Assignee: SAS INSTITUTE INC.
    Inventors: Kedar Shriram Prabhudesai, Varunraj Valsaraj, Jinxin Yi, Daniel Keongson Woo, Roger Lee Baldridge, Jr.
  • Patent number: 11176692
    Abstract: A computing system responsive to obtaining original image data, detects a set of data point(s), in the original image data, that indicates an object. The system determines, based on the set of data point(s), a set of pixels associated with the object in the original image data. The system generates an alternative visual identifier for the object that provides a unique identifier for the set of pixels absent in the original image data. The system generates, autonomously from intervention by any user of the computing system, pixel information to conceal feature(s) of the object. The system obtains modified image data comprising the alternative visual identifier. The modified image data further comprises the feature(s) of the object in the original image data visually concealed in the modified image data according to the pixel information. The system outputs an image representation of a trajectory of the object through the modified image data.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: November 16, 2021
    Assignee: SAS Institute Inc.
    Inventors: Hamza Mustafa Ghadyali, Kedar Shriram Prabhudesai, Jonathan Lee Walker, Xunlei Wu, Xingqi Du, Bahar Biller, Mohammadreza Nazari, Afshin Oroojlooyjadid, Alexander Richard Phelps, Davood Hajinezhad, Varunraj Valsaraj, Jorge Manuel Gomes da Silva, Jinxin Yi
  • Patent number: 11176691
    Abstract: A computing system obtains image data representing images. Each of the images is captured at different time points of a physical environment. The physical environment comprises a first object and a second object. The computing system executes a control system to augment the physical environment. The control system detects a group forming in the images. The control system tracks an aspect of a movement, of a given object, in the group. The control system simulates the physical environment and the movement, of the given object, in the group in a simulated environment. The control system evaluates simulated actions in the simulated environment for a predefined objective for the physical environment. The predefined objective is related to an interaction between objects in the group. The control system generates based on evaluated simulated actions and autonomously from involvement by any user of the control system, an indication to augment the physical environment.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: November 16, 2021
    Assignee: SAS Institute Inc.
    Inventors: Hamza Mustafa Ghadyali, Kedar Shriram Prabhudesai, Mohammadreza Nazari, Bahar Biller, Afshin Oroojlooyjadid, Alexander Richard Phelps, Jonathan Lee Walker, Xunlei Wu, Xingqi Du, Davood Hajinezhad, Varunraj Valsaraj, Jorge Manuel Gomes da Silva, Jinxin Yi
  • Publication number: 20210312277
    Abstract: Requests for computing resources and other resources can be predicted and managed. For example, a system can determine a baseline prediction indicating a number of requests for an object over a future time-period. The system can then execute a first model to generate a first set of values based on seasonality in the baseline prediction, a second model to generate a second set of values based on short-term trends in the baseline prediction, and a third model to generate a third set of values based on the baseline prediction. The system can select a most accurate model from among the three models and generate an output prediction by applying the set of values output by the most accurate model to the baseline prediction. Based on the output prediction, the system can cause an adjustment to be made to a provisioning process for the object.
    Type: Application
    Filed: November 3, 2020
    Publication date: October 7, 2021
    Applicant: SAS Institute Inc.
    Inventors: Kedar Shriram Prabhudesai, Varunraj Valsaraj, Jinxin Yi, Daniel Keongson Woo, Roger Lee Baldridge, JR.
  • Patent number: 11055861
    Abstract: A computing system receives historical data. The historical data comprises physical actions taken in an experiment in a physical environment. The experiment comprises user-defined stages. The historical data comprises a recorded outcome, according to user-defined performance indicator(s) related to the user-defined stages, for each physical action taken in the experiment. The system generates, by a discrete event simulator, a computing representation of a simulated environment of the physical environment. The simulated environment comprises processing stages. The system obtains simulation data. The simulation data comprises simulated actions taken by the discrete event simulator. The simulation data comprises a predicted outcome, according to user-defined performance indicator(s) related to the processing stages, for each simulated action taken by the discrete event simulator. The system validates accuracy of the discrete event simulator at predicting the recorded outcome in the experiment.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: July 6, 2021
    Assignee: SAS Institute Inc.
    Inventors: Mohammadreza Nazari, Afshin Oroojlooyjadid, Alexander Richard Phelps, Davood Hajinezhad, Bahar Biller, Jonathan Lee Walker, Hamza Mustafa Ghadyali, Kedar Shriram Prabhudesai, Xunlei Wu, Xingqi Du, Jorge Manuel Gomes da Silva, Varunraj Valsaraj, Jinxin Yi
  • Publication number: 20210082129
    Abstract: A computing system receives historical data. The historical data comprises physical actions taken in an experiment in a physical environment. The experiment comprises user-defined stages. The historical data comprises a recorded outcome, according to user-defined performance indicator(s) related to the user-defined stages, for each physical action taken in the experiment. The system generates, by a discrete event simulator, a computing representation of a simulated environment of the physical environment. The simulated environment comprises processing stages. The system obtains simulation data. The simulation data comprises simulated actions taken by the discrete event simulator. The simulation data comprises a predicted outcome, according to user-defined performance indicator(s) related to the processing stages, for each simulated action taken by the discrete event simulator. The system validates accuracy of the discrete event simulator at predicting the recorded outcome in the experiment.
    Type: Application
    Filed: October 1, 2020
    Publication date: March 18, 2021
    Inventors: Mohammadreza Nazari, Afshin Oroojlooyjadid, Alexander Richard Phelps, Davood Hajinezhad, Bahar Biller, Jonathan Lee Walker, Hamza Mustafa Ghadyali, Kedar Shriram Prabhudesai, Xunlei Wu, Xingqi Du, Jorge Manuel Gomes da Silva, Varunraj Valsaraj, Jinxin Yi
  • Publication number: 20210035313
    Abstract: A computing system responsive to obtaining original image data, detects a set of data point(s), in the original image data, that indicates an object. The system determines, based on the set of data point(s), a set of pixels associated with the object in the original image data. The system generates an alternative visual identifier for the object that provides a unique identifier for the set of pixels absent in the original image data. The system generates, autonomously from intervention by any user of the computing system, pixel information to conceal feature(s) of the object. The system obtains modified image data comprising the alternative visual identifier. The modified image data further comprises the feature(s) of the object in the original image data visually concealed in the modified image data according to the pixel information. The system outputs an image representation of a trajectory of the object through the modified image data.
    Type: Application
    Filed: October 1, 2020
    Publication date: February 4, 2021
    Inventors: Hamza Mustafa Ghadyali, Kedar Shriram Prabhudesai, Jonathan Lee Walker, Xunlei Wu, Xingqi Du, Bahar Biller, Mohammadreza Nazari, Afshin Oroojlooyjadid, Alexander Richard Phelps, Davood Hajinezhad, Varunraj Valsaraj, Jorge Manuel Gomes da Silva, Jinxin Yi
  • Publication number: 20210019528
    Abstract: A computing system obtains image data representing images. Each of the images is captured at different time points of a physical environment. The physical environment comprises a first object and a second object. The computing system executes a control system to augment the physical environment. The control system detects a group forming in the images. The control system tracks an aspect of a movement, of a given object, in the group. The control system simulates the physical environment and the movement, of the given object, in the group in a simulated environment. The control system evaluates simulated actions in the simulated environment for a predefined objective for the physical environment. The predefined objective is related to an interaction between objects in the group. The control system generates based on evaluated simulated actions and autonomously from involvement by any user of the control system, an indication to augment the physical environment.
    Type: Application
    Filed: October 1, 2020
    Publication date: January 21, 2021
    Inventors: Hamza Mustafa Ghadyali, Kedar Shriram Prabhudesai, Mohammadreza Nazari, Bahar Biller, Afshin Oroojlooyjadid, Alexander Richard Phelps, Jonathan Lee Walker, Xunlei Wu, Xingqi Du, Davood Hajinezhad, Varunraj Valsaraj, Jorge Manuel Gomes da Silva, Jinxin Yi
  • Patent number: 10255085
    Abstract: One exemplary system can receive a selection of a dataset via a graphical user interface (GUI). The dataset can represent a time-series projection. The system can feed the dataset into a first machine-learning model to obtain an output indicating whether the time-series projection has a data value that should be overridden with an override value. If the first machine-learning model indicates that the time-series projection has the data value that should be overridden, the system can feed the data value as input to a second machine-learning model to obtain an output indicating whether the override value should be greater than or less than the data value. The system can then render a visual directionality cue within the GUI based on the output from the second machine-learning model. The visual directionality cue can provide guidance for overriding the data value.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: April 9, 2019
    Assignee: SAS INSTITUTE INC.
    Inventors: Varunraj Valsaraj, Bahadir Aral, Jinxin Yi, Roger Lee Baldridge, Jr., Rebecca Gallagher
  • Patent number: 9705751
    Abstract: A computing device quantifies an expected benefit from a calibrated coefficient of variation (CV) and/or a calibrated service level (SL). The target optimization model determines a number and a time a new requisition is placed for an item at each node of the plurality of nodes. A validation time value is updated using an incremental time value and the process is repeated until the validation time value is greater than or equal to a stop time.
    Type: Grant
    Filed: October 26, 2016
    Date of Patent: July 11, 2017
    Assignee: SAS Institute Inc.
    Inventors: Jinxin Yi, Necip Baris Kacar, Varunraj Valsaraj
  • Patent number: 8515835
    Abstract: In accordance with the teachings described herein, systems and methods are provided for optimizing inventory in a multi-echelon inventory distribution network having at least a first echelon and a second echelon.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: August 20, 2013
    Assignee: SAS Institute Inc.
    Inventors: Xinmin Wu, Jinxin Yi
  • Publication number: 20120054076
    Abstract: In accordance with the teachings described herein, systems and methods are provided for optimizing inventory in a multi-echelon inventory distribution network having at least a first echelon and a second echelon.
    Type: Application
    Filed: August 30, 2010
    Publication date: March 1, 2012
    Inventors: Xinmin Wu, Jinxin Yi