Patents by Inventor Jinyuan Qiao

Jinyuan Qiao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9927639
    Abstract: Methods, systems, and apparatus for optical communications are provided. One of the apparatus includes a first Faraday rotator having an applied magnetic field in a first direction; a second Faraday rotator optically coupled to the first Faraday rotator, the second Faraday rotator having an applied magnetic field in a second direction in opposition to the first direction; and a mirror optically coupled to the second Faraday rotator.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: March 27, 2018
    Assignee: Oplink Communications, LLC
    Inventors: Hongwei Mao, Daxin Chen, Zexiong Zhao, Jinyuan Qiao, Miao Yang, Linhu Li
  • Patent number: 9798081
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for optical communications. In one aspect, an optical circulator array includes a plurality of stacked three port circulators each having a respective first port of a first port array, a respective second port of a second port array, and a respective third port of a third port array. Each of the plurality of staked three port circulators share optical components including a first micro lens array optically coupled to the first port array and the third port array, a first walk off crystal, a first half wave plate, a first faraday rotator, a first birefringence wedge pair, a second birefringence wedge pair, a second Faraday rotator, a second half wave plate, a second birefringence walk off crystal, and a second micro lens array optically coupled to the second port array.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: October 24, 2017
    Assignee: Oplink Communications, LLC
    Inventors: Hongwei Mao, Zhongsheng Wang, Guijun Ji, Jinyuan Qiao, Tian Zhu, Lifu Gong
  • Publication number: 20170269296
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for optical communications. In one aspect, an optical circulator array includes a plurality of stacked three port circulators each having a respective first port of a first port array, a respective second port of a second port array, and a respective third port of a third port array. Each of the plurality of staked three port circulators share optical components including a first micro lens array optically coupled to the first port array and the third port array, a first walk off crystal, a first half wave plate, a first faraday rotator, a first birefringence wedge pair, a second birefringence wedge pair, a second Faraday rotator, a second half wave plate, a second birefringence walk off crystal, and a second micro lens array optically coupled to the second port array.
    Type: Application
    Filed: June 7, 2017
    Publication date: September 21, 2017
    Applicant: Oplink Communications, LLC
    Inventors: Hongwei MAO, Zhongsheng WANG, Guijun JI, Jinyuan QIAO, Tian ZHU, Lifu GONG
  • Patent number: 9703124
    Abstract: Methods, systems, and apparatus for optical communications. One of the apparatuses comprises a birefringent crystal configured to separate an incoming light beam input at a first port into component light beams having orthogonal polarization directions and directing the component light beams on respective paths to exit locations on the birefringent crystal; and a Faraday rotator positioned between the birefringent crystal and a beam folding optic assembly, wherein the Faraday rotator is positioned such that light beams exiting the birefringent crystal along a first path from a first exit location pass through the Faraday rotator before being incident on the beam folding optic assembly and that light beams exiting the birefringent crystal along a second path from a second exit location pass directly to the beam folding optic assembly without being incident on the Faraday rotator.
    Type: Grant
    Filed: November 20, 2014
    Date of Patent: July 11, 2017
    Assignee: Oplink Communications, LLC
    Inventors: Hongwei Mao, Daxin Chen, Linhu Li, Jinyuan Qiao, Tanbin He, Zexiong Zhao, Feng Qing Zhou
  • Patent number: 9696485
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for optical communications. In one aspect, an optical circulator array includes a plurality of stacked three port circulators each having a respective first port of a first port array, a respective second port of a second port array, and a respective third port of a third port array, wherein each of the plurality of stacked three port circulators share optical components including: a first Wollaston prism coupled to the first port array, a first lens, a first half wave plate, a polarization dependent beam path separator, a second half wave plate, a second lens, a propagation direction dependent polarization rotation assembly, a second Wollaston prism coupled to the second port array, and a third Wollaston prism coupled to the third port array.
    Type: Grant
    Filed: July 16, 2014
    Date of Patent: July 4, 2017
    Assignee: Oplink Communications, LLC
    Inventors: Hongwei Mao, Zhongsheng Wang, Guijun Ji, Jinyuan Qiao, Tian Zhu, Lifu Gong
  • Publication number: 20160018594
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for optical communications. In one aspect, an optical circulator array includes a plurality of stacked three port circulators each having a respective first port of a first port array, a respective second port of a second port array, and a respective third port of a third port array, wherein each of the plurality of staked three port circulators share optical components including: a first Wollaston prism coupled to the first port array, a first lens, a first half wave plate, a polarization dependent beam path separator, a second half wave plate, a second lens, a propagation direction dependent polarization rotation assembly, a second Wollaston prism coupled to the second port array, and a third Wollaston prism coupled to the third port array.
    Type: Application
    Filed: July 16, 2014
    Publication date: January 21, 2016
    Inventors: Hongwei Mao, Zhongsheng Wang, Guijun Ji, Jinyuan Qiao, Tian Zhu, Lifu Gong
  • Publication number: 20150212347
    Abstract: Methods, systems, and apparatus for optical communications are provided. One of the apparatus includes a first Faraday rotator having an applied magnetic field in a first direction; a second Faraday rotator optically coupled to the first Faraday rotator, the second Faraday rotator having an applied magnetic field in a second direction in opposition to the first direction; and a mirror optically coupled to the second Faraday rotator.
    Type: Application
    Filed: January 30, 2015
    Publication date: July 30, 2015
    Inventors: Hongwei Mao, Daxin Chen, Zexiong Zhao, Jinyuan Qiao, Miao Yang, Linhu Li
  • Publication number: 20150146291
    Abstract: Methods, systems, and apparatus for optical communications. One of the apparatuses comprises a birefringent crystal configured to separate an incoming light beam input at a first port into component light beams having orthogonal polarization directions and directing the component light beams on respective paths to exit locations on the birefringent crystal; and a Faraday rotator positioned between the birefringent crystal and a beam folding optic assembly, wherein the Faraday rotator is positioned such that light beams exiting the birefringent crystal along a first path from a first exit location pass through the Faraday rotator before being incident on the beam folding optic assembly and that light beams exiting the birefringent crystal along a second path from a second exit location pass directly to the beam folding optic assembly without being incident on the Faraday rotator.
    Type: Application
    Filed: November 20, 2014
    Publication date: May 28, 2015
    Inventors: Hongwei Mao, Daxin Chen, Linhu Li, Jinyuan Qiao, Tanbin He, Zexiong Zhao, Feng Qing Zhou