Patents by Inventor Jo-Wei Chen

Jo-Wei Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240132923
    Abstract: Provided is a recombinant microorganism including at least two genes for producing itaconic acid and its derived monomers, and the at least two genes are located on the same expression vector. The at least two genes include one encoding cis-aconitic acid decarboxylase and the other one encoding aconitase, and the genome of the recombinant microorganism includes a gene encoding the molecular chaperone protein GroELS. Also provided is a method for producing itaconic acid by using the microorganism.
    Type: Application
    Filed: March 22, 2023
    Publication date: April 25, 2024
    Inventors: I-Son NG, Jo-Shu CHANG, Chuan-Chieh HSIANG, Yeong-Chang CHEN, Yu-Chiao LIU, Chia-Wei TSAI
  • Patent number: 11966241
    Abstract: A circuit includes a voltage divider circuit configured to generate a feedback voltage according to an output voltage, an operational amplifier configured to output a driving signal according to the feedback voltage and a reference voltage and a pass gate circuit including multiple current paths. The current paths are controlled by the driving signal and connected in parallel between the voltage divider circuit and a power reference node.
    Type: Grant
    Filed: February 11, 2022
    Date of Patent: April 23, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Huan-Neng Chen, Yen-Lin Liu, Chia-Wei Hsu, Jo-Yu Wu, Chang-Fen Hu, Shao-Yu Li, Bo-Ting Chen
  • Patent number: 6953608
    Abstract: A HDP CVD process for depositing a USG liner followed by a FSG dielectric layer on a metal line pattern is described. The substrate is heated in a chamber with a plasma comprised of Ar and O2. A USG liner is deposited in two steps wherein the first step is without an RF bias and the second step is with a moderate RF bias that does not damage the metal lines or an anti-reflective coating on the metal. The moderate RF bias is critical in forming a sputtering component that redeposits USG to form more uniform sidewalls and better coverage at top corners of metal lines. The USG deposition process has a good gap filling capability and significantly reduces device failure rate by preventing corrosion of metal lines during subsequent thermal process cycles. The method also includes a PECVD deposited FSG layer that is planarized to complete an IMD layer.
    Type: Grant
    Filed: April 23, 2003
    Date of Patent: October 11, 2005
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Pong-Hsiung Leu, Yu-Min Chang, Fang-Wen Tsai, Jo-Wei Chen, Wan-Cheng Yang, Chyi-Tsong Ni
  • Publication number: 20040213921
    Abstract: A HDP CVD process for depositing a USG liner followed by a FSG dielectric layer on a metal line pattern is described. The substrate is heated in a chamber with a plasma comprised of Ar and O2. A USG liner is deposited in two steps wherein the first step is without an RF bias and the second step is with a moderate RF bias that does not damage the metal lines or an anti-reflective coating on the metal. The moderate RF bias is critical in forming a sputtering component that redeposits USG to form more uniform sidewalls and better coverage at top corners of metal lines. The USG deposition process has a good gap filling capability and significantly reduces device failure rate by preventing corrosion of metal lines during subsequent thermal process cycles. The method also includes a PECVD deposited FSG layer that is planarized to complete an IMD layer.
    Type: Application
    Filed: April 23, 2003
    Publication date: October 28, 2004
    Applicant: Taiwan Semiconductor Manufacturing Co.
    Inventors: Pong-Hsiung Leu, Yu-Min Chang, Fang-Wen Tsai, Jo-Wei Chen, Wan-Cheng Yang, Chyi-Tsong Ni