Patents by Inventor Joachim Danmayr

Joachim Danmayr has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11626792
    Abstract: An inverter includes a DC/DC converter which converts a direct current received from a DC voltage source into an intermediate circuit voltage of an intermediate circuit, a DC/AC converter which converts the intermediate circuit voltage into an AC voltage, and a monitoring unit which monitors capacitors of the intermediate circuit for protection against overvoltages. If an overvoltage occurs at one of the capacitors of the intermediate circuit the overvoltage unit decouples the DC voltage source from the intermediate circuit by actuating the DC/DC converter.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: April 11, 2023
    Assignee: Fronius International GmbH
    Inventors: Friedrich Oberzaucher, Gerhard Wallisch, Joachim Danmayr, Andreas Luger
  • Publication number: 20220011365
    Abstract: In order to be able to perform a shutdown test on an inverter with little expenditure, a trigger signal is modulated to the AC current or the AC voltage at a first moment, and the inverter is used at a second moment, which occurs a defined duration after the start of the trigger signal at the first moment, to generate an AC current or an AC voltage with a fault signal that is detected by the inverter and which triggers a shutdown of the inverter, and the shutdown moment of the AC current or the AC voltage is determined. A shutdown duration of the inverter is determined from the difference between the shutdown moment and the second moment.
    Type: Application
    Filed: September 24, 2019
    Publication date: January 13, 2022
    Applicant: Fronius International GmbH
    Inventors: Joachim DANMAYR, Christian KASBERGER
  • Publication number: 20210311130
    Abstract: The invention relates to a method for testing a disconnection point (12) of a photovoltaic inverter (1) and to a photovoltaic inverter (1) of this type. According to the invention, in a testing mode, an auxiliary voltage (U_Lx) is applied between the input (E_Lx) of each line (Lx) of the disconnection point (12) and an intermediate circuit potential (M), in each case, the first switching contacts (SW_Lx,1) are closed and the second switching contacts (SW_Lx,2) are opened alternately and vice versa, according to a switching pattern, and, for each switching pattern, the voltages (U_Lx,GD; U_MN) between the output (A_Lx) of each line (Lx) of the disconnection point (12) and the intermediate circuit potential (M) are measured, and the functionality of each switching contact (SW_Lx,j) is derived from the measured voltages (U_Lx,GD; U_MN).
    Type: Application
    Filed: October 3, 2019
    Publication date: October 7, 2021
    Applicant: Fronius International GmbH
    Inventors: Gerhard WALLISCH, Joachim DANMAYR
  • Patent number: 11125833
    Abstract: The invention relates to a method for testing a disconnection point (12) of a photovoltaic inverter (1) and to a photovoltaic inverter (1) of this type. According to the invention, in a testing mode, an auxiliary voltage (U_Lx) is applied between the input (E_Lx) of each line (Lx) of the disconnection point (12) and an intermediate circuit potential (M), in each case, the first switching contacts (SW_Lx,1) are closed and the second switching contacts (SW_Lx,2) are opened alternately and vice versa, according to a switching pattern, and, for each switching pattern, the voltages (U_Lx,GD; U_MN) between the output (A_Lx) of each line (Lx) of the disconnection point (12) and the intermediate circuit potential (M) are measured, and the functionality of each switching contact (SW_Lx,j) is derived from the measured voltages (U_Lx,GD; U_MN).
    Type: Grant
    Filed: October 3, 2019
    Date of Patent: September 21, 2021
    Assignee: Fronius International GmbH
    Inventors: Gerhard Wallisch, Joachim Danmayr
  • Publication number: 20210143729
    Abstract: Inverter (1) comprising a DC/DC converter (4) which converts a direct current received from a DC voltage source (3) into an intermediate circuit voltage of an intermediate circuit (5), a DC/AC converter (6) which converts the intermediate circuit voltage into an AC voltage, and comprising a monitoring unit (8) which monitors capacitors of the intermediate circuit (5) for protection against overvoltages, the over-voltage unit (8), if an overvoltage occurs at at least one of the capacitors of the intermediate circuit (5), decoupling the DC voltage source (3) from the intermediate circuit (5) by actuating the DC/DC converter (4).
    Type: Application
    Filed: July 30, 2019
    Publication date: May 13, 2021
    Inventors: Friedrich Oberzaucher, Gerhard Wallisch, Joachim Danmayr, Andreas Luger
  • Patent number: 9929673
    Abstract: A method for feeding energy from photovoltaic modules (2) of a photovoltaic system (1) into a supply grid (5), or to a load, converts the DC voltage (UDC) generated by the photovoltaic modules (2) in an inverter (3) with an intermediate circuit (7) with a capacitor (CZW) and with a DC/AC-converter (8) into an AC voltage (UAC), and in a feed-in mode of operation the inverter (3) is connected via a switching device (4) to the supply grid (5), or to the load, together with an inverter (3) for executing the method. For conservation of the switching device (4) the input power (Pe) of the photovoltaic modules (2) is determined in a test procedure, and the switching device (4) of the inverter (3) is activated if the input power (Pe) of the photovoltaic modules (2) as determined is greater than or equal to a specified minimum input power (Pe,min).
    Type: Grant
    Filed: April 14, 2015
    Date of Patent: March 27, 2018
    Assignee: Fronius International GmbH
    Inventors: Joachim Danmayr, Johannes Starzinger, Julian Landauer
  • Patent number: 9800174
    Abstract: Power supply for an inverter and method for operating power supply. Power supply includes a throttle arranged to connect an output end of the inverter to an electric power supply network; a secondary-side auxiliary winding that is arranged on the throttle to transmit an output voltage (UA) of the inverter to a secondary side of the throttle; and a comparator unit. The comparator unit compares a voltage (U1) of the electric supply network with the voltage (U2) of the secondary side of the throttle, to supply, depending upon a result of the comparison of the electric supply network voltage (U1) to the secondary side voltage (U2) of the throttle, electric power to the power supply either from the electric supply network or via the secondary-side auxiliary winding.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: October 24, 2017
    Assignee: FRONIUS INTERNATIONAL GmbH
    Inventors: Joachim Danmayr, Stefan Bloechl, Andreas Luger, Dietmar Striegl, Martin Moertenhuber
  • Patent number: 9494659
    Abstract: The invention relates to a method for checking a photovoltaic inverter separator (14) between the photovoltaic inverter (1) and a power supply network (7), comprising multiple phases (L1, L2, L3) and a neutral conductor (N), wherein multiple switching contacts of the separator (14) are controlled by the photovoltaic inverter (1), and the invention also relates to a photovoltaic inverter (1). The aim of the invention is to allow a simple and quick check of the functionality of the separator (14). This is achieved in that the switching contacts of the separator (14) are connected and checked in steps according to a switching pattern. In each step, each voltage (30, 31, 32 and 33, 34, 35) is measured at at least one phase (L1, L2, L3) upstream and downstream of the separator (14) in relation to the neutral conductor (N), and the voltages are compared to one another.
    Type: Grant
    Filed: June 11, 2013
    Date of Patent: November 15, 2016
    Assignee: Fronius International GmbH
    Inventors: Joachim Danmayr, Stefan Bloechl
  • Patent number: 9297847
    Abstract: The invention relates to a method for checking a separation point (14) between a photovoltaic inverter (1) and a power supply network (7) having multiple phases (L1, L2, L3) and a neutral conductor (N), wherein multiple switching contacts of the separation point (14) are controlled by the photovoltaic inverter (1), and to a photovoltaic inverter (1). To allow a simple and quick check of the functionality of the separation point (14), the switching contacts of the separation point (14) are each formed by single-pole relays (15-22) and switched in steps according to a switching pattern. For checking switching contacts, a voltage (26, 27, 28) is measured at at least one phase (L1, L2, L3) with respect to the neutral conductor (N), upstream of the separation point (14), and compared to voltage values assigned in accordance with the switching pattern, thereby to deduce the functionality of the switching contacts.
    Type: Grant
    Filed: February 12, 2014
    Date of Patent: March 29, 2016
    Assignee: Fronius International GmbH
    Inventors: Friedrich Oberzaucher, Joachim Danmayr
  • Publication number: 20150295512
    Abstract: A method for feeding energy from photovoltaic modules (2) of a photovoltaic system (1) into a supply grid (5), or to a load, converts the DC voltage (UDC) generated by the photovoltaic modules (2) in an inverter (3) with an intermediate circuit (7) with a capacitor (CZW) and with a DC/AC-converter (8) into an AC voltage (UAC), and in a feed-in mode of operation the inverter (3) is connected via a switching device (4) to the supply grid (5), or to the load, together with an inverter (3) for executing the method. For conservation of the switching device (4) the input power (Pe) of the photovoltaic modules (2) is determined in a test procedure, and the switching device (4) of the inverter (3) is activated if the input power (Pe) of the photovoltaic modules (2) as determined is greater than or equal to a specified minimum input power (Pe,min).
    Type: Application
    Filed: April 14, 2015
    Publication date: October 15, 2015
    Applicant: FRONIUS INTERNATIONAL GMBH
    Inventors: Joachim DANMAYR, Johannes STARZINGER, Julian LANDAUER
  • Publication number: 20150146463
    Abstract: To be able to maintain the power supply of an inverter which is supplied with power from a supply network even in the event of a power failure, it is proposed according to the invention that in the event of a power failure, the electric power for the power supply (2) of the inverter (1) is obtained from a throttle (7) of the inverter (1) at the output end via an auxiliary winding (13).
    Type: Application
    Filed: May 24, 2013
    Publication date: May 28, 2015
    Applicant: FRONIUS INTERNATIONAL GmbH
    Inventors: Joachim Danmayr, Stefan Bloechl, Andreas Luger, Dietmar Striegl, Martin Moertenhuber
  • Publication number: 20150091604
    Abstract: The invention relates to a method for checking a photovoltaic inverter separator (14) between the photovoltaic inverter (1) and a power supply network (7), comprising multiple phases (L1, L2, L3) and a neutral conductor (N), wherein multiple switching contacts of the separator (14) are controlled by the photovoltaic inverter (1), and the invention also relates to a photovoltaic inverter (1). The aim of the invention is to allow a simple and quick check of the functionality of the separator (14). This is achieved in that the switching contacts of the separator (14) are connected and checked in steps according to a switching pattern. In each step, each voltage (30, 31, 32 and 33, 34, 35) is measured at at least one phase (L1, L2, L3) upstream and downstream of the separator (14) in relation to the neutral conductor (N), and the voltages are compared to one another.
    Type: Application
    Filed: June 11, 2013
    Publication date: April 2, 2015
    Applicant: Fronius International GmbH
    Inventors: Joachim Danmayr, Stefan Bloechl
  • Publication number: 20140226365
    Abstract: The invention relates to a method for checking a separation point (14) between a photovoltaic inverter (1) and a power supply network (7) having multiple phases (L1, L2, L3) and a neutral conductor (N), wherein multiple switching contacts of the separation point (14) are controlled by the photovoltaic inverter (1), and to a photovoltaic inverter (1). To allow a simple and quick check of the functionality of the separation point (14), the switching contacts of the separation point (14) are each formed by single-pole relays (15-22) and switched in steps according to a switching pattern. For checking switching contacts, a voltage (26, 27, 28) is measured at at least one phase (L1, L2, L3) with respect to the neutral conductor (N), upstream of the separation point (14), and compared to voltage values assigned in accordance with the switching pattern, thereby to deduce the functionality of the switching contacts.
    Type: Application
    Filed: February 12, 2014
    Publication date: August 14, 2014
    Applicant: Fronius International GmbH
    Inventors: Friedrich OBERZAUCHER, Joachim DANMAYR
  • Patent number: 8645937
    Abstract: The invention relates to a photovoltaic plant having a plurality of inverters (1) connected to each other by way of a network (12), wherein the inverters (1) comprise a control apparatus (7) having at least one microprocessor (8) and at least one storage, an interface for communicating with the remaining inverters (1), a DC/AC module (3) for converting a direct current supplied from an external energy source into an alternating current, and an input/output unit (9), and to such an inverter (1) and a USB mass storage device (11), as well as to a method for carrying out software updates. According to the invention, a USB interface (10) is arranged on at least one inverter (1) for connecting a USB mass storage device (11), in particular a USB stick, so as to carry out automatic updates in a software running in the microprocessor (8) and/or configuration block updates and/or so as to record logging data of the inverters.
    Type: Grant
    Filed: January 18, 2010
    Date of Patent: February 4, 2014
    Assignee: Fronius International GmbH
    Inventors: Christian Angerer, Alexander Zorn, Harald Josef Kreuzer, Joachim Danmayr
  • Publication number: 20110283272
    Abstract: The invention relates to a photovoltaic plant having a plurality of inverters (1) connected to each other by way of a network (12), wherein the inverters (1) comprise a control apparatus (7) having at least one microprocessor (8) and at least one storage, an interface for communicating with the remaining inverters (1), a DC/AC module (3) for converting a direct current supplied from an external energy source into an alternating current, and an input/output unit (9), and to such an inverter (1) and a USB mass storage device (11), as well as to a method for carrying out software updates. According to the invention, a USB interface (10) is arranged on at least one inverter (1) for connecting a USB mass storage device (11), in particular a USB stick, so as to carry out automatic updates in a software running in the microprocessor (8) and/or configuration block updates and/or so as to record logging data of the inverters.
    Type: Application
    Filed: January 18, 2010
    Publication date: November 17, 2011
    Applicant: Fronius International GmbH
    Inventors: Christian Angerer, Alexander Zorn, Harald Josef Kreuzer, Joachim Danmayr