Patents by Inventor Joachim Sachs

Joachim Sachs has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11323203
    Abstract: User equipments, radio network nodes, and related methods, are provided for enabling reporting of channel quality indicator values corresponding to a particular error rate level among a plurality of error rate levels and to a particular modulation and coding scheme among a plurality of modulation and coding schemes.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: May 3, 2022
    Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
    Inventors: Gustav Wikström, Muhammad Kazmi, Joachim Sachs, Kittipong Kittichokechai
  • Publication number: 20220078662
    Abstract: Systems and methods related to Time-Sensitive Networking (TSN)-cellular communication system Quality of Service (QoS) mapping are disclosed. In some embodiments, a method performed for operating a cellular communications system as a virtual TSN node in a TSN system comprises, at a TSN application function, receiving one or more TSN QoS parameters for the virtual TSN node from a controller associated with the TSN system and providing the one or more TSN QoS parameters to a core network function in a core network of the cellular communications system. The method further comprises, at the core network function, receiving the one or more TSN QoS parameters, mapping them to one or more QoS policies and/or one or more rules in the cellular communications system, and applying the one or more QoS policies and/or the one or more rules in the cellular communications system.
    Type: Application
    Filed: January 10, 2020
    Publication date: March 10, 2022
    Inventors: Kun Wang, Kefeng Kenny Zhang, Paul Schliwa-Bertling, Joachim Sachs, Torsten Dudda, Marilet De Andrade Jardim, János Harmatos, Dinand Roeland, Balázs Varga
  • Publication number: 20220046462
    Abstract: Systems and method are disclosed herein that relate to support for virtual Time-Sensitive Networking (TSN) bridge management, Quality of Service (QoS) mapping, and TSN related scheduling in a cellular communications system. In some embodiments, a method performed by one or more network nodes of a cellular communications system operating as a virtual TSN bridge of a TSN network comprises providing, to a controller associated with the TSN network, parameters that relate to capabilities of the virtual TSN bridge. The parameters that relate to the capabilities of the virtual TSN bridge comprise a first parameter that defines a clock accuracy of an entity in the cellular communications system that operates gating control for the virtual TSN bridge and a second parameter that informs the controller associated with the TSN network that the virtual TSN bridge or a particular egress port of the virtual TSN bridge is restricted to exclusive gating.
    Type: Application
    Filed: February 14, 2020
    Publication date: February 10, 2022
    Inventors: Marilet De Andrade Jardim, Kefeng Kenny Zhang, János Harmatos, János Farkas, Kun Wang, Paul Schliwa-Bertling, Joachim Sachs, Balázs Varga, Maria Belen Pancorbo Marcos, Chunmeng Wang, György Miklós, Shabnam Sultana
  • Publication number: 20220021624
    Abstract: Systems and methods are disclosed herein for output pacing in a cellular communications system that serves as a virtual Time-Sensitive Networking (TSN) node in a TSN network. In some embodiments, a method of operation of a boundary node associated with a cellular communications system that operates as a virtual TSN node in a TSN network comprises receiving user plane traffic from a node in the cellular communications system. The user plane traffic is user plane traffic received by the cellular communications system from a previous hop TSN node. The method further comprises performing output pacing for the user plane traffic when outputting the user plane traffic to a next hop TSN node such that the user plane traffic is output to the next hop TSN node at a rate that matches a desired rate at the next hop TSN node. Corresponding embodiments of a boundary node are also disclosed.
    Type: Application
    Filed: November 19, 2019
    Publication date: January 20, 2022
    Inventors: Joachim Sachs, János Farkas, Balázs Varga, Dinand Roeland, György Miklós, Kun Wang
  • Patent number: 11218564
    Abstract: A method performed by a first node in a communication network, the first node being a first end-point of signaling with a second node in the communication network, the second node being a second end-point in the signaling. The method comprises receiving signals from the second node, the received signals comprising instructions for the first node to perform a plurality of actions as well as an indication for in which order the actions should be performed. The method also comprises performing the actions in order. The method also comprises sending signals to the second node, the sent signals comprising an acknowledgement that the plurality of actions have been performed.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: January 4, 2022
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Ari Keränen, Nicklas Beijar, Anders E Eriksson, Francesco Militano, Johan Rune, Joachim Sachs, Vlasios Tsiatsis
  • Publication number: 20210377888
    Abstract: The present disclosure provides techniques for reducing latency of periodic URLLC transmission and other critical data transmission with low latency requirements. To support periodic URLLC traffic, SPS with repetition is used. Before synchronization is achieved, the base station sends to the UE an SPS configuration for a periodic uplink data transmission. When the starting time of the data transmission is not known, the base station over-provisions SPS resources for the periodic data transmission. Based on the timing of the data transmissions, the base station adjusts the timing of the SPS configuration.
    Type: Application
    Filed: August 13, 2021
    Publication date: December 2, 2021
    Inventors: Zhenhua Zou, Ali Behravan, Joachim Sachs
  • Patent number: 11109329
    Abstract: The present disclosure provides techniques for reducing latency of periodic URLLC transmission and other critical data transmission with low latency requirements. To support periodic URLLC traffic, SPS with repetition is used. Before synchronization is achieved, the base station (300, 500) sends to the UE (400, 600) an SPS configuration for a periodic uplink data transmissions. When the starting time of the data transmission is not known, the base station (300, 600) over-provisions SPS resources for the periodic data transmission. Based on the timing of the data transmissions, the base stations (300, 600) adjusts the timing of the SPS configuration.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: August 31, 2021
    Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
    Inventors: Zhenhua Zou, Ali Behravan, Joachim Sachs
  • Patent number: 11069237
    Abstract: According to a first embodiment of inventive concepts, method of operating an intelligent transportation system may include obtaining first traffic information from a first source, with the first traffic information including position information for a first vehicle, and with the first traffic information being generated independently of the first vehicle. Second traffic information may be obtained from a second source, with the second traffic information omitting position information for the first vehicle. Responsive to comparing the first traffic information and the second traffic information, the first vehicle may be identified as being non-collaborative with respect to the intelligent transportation system. Traffic coordination may be provided based on a position of the first vehicle and based on identifying the first vehicle as being non-collaborative with respect to the intelligent transportation system.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: July 20, 2021
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Joachim Sachs, Mikael Fallgreen, Nicolas Schrammar, Johan Torsner
  • Patent number: 11057838
    Abstract: A method of adapting the output power of a radio transmitting entity within a cage having at least one aperture. The method includes the steps of providing at least one sensor operable to sense the condition of the at least one aperture and providing a controller to adjust the output power of the radio transmitting entity in accordance with the sensed condition of the at least one aperture.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: July 6, 2021
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Michael Meyer, Joachim Sachs, Anders Furuskär
  • Patent number: 10999177
    Abstract: A first node (110) and a method therein for managing modes of operation of a service, referred to as “service modes” are disclosed. The service is executed in the first node (110). The service is capable of communicating with a second node (120) over a wireless network (100). The first node (110) receives an estimated level of a connectivity for the service from the wireless network (100). The estimated level of the connectivity relates to likelihood of maintaining the connectivity to the second node (120). The first node (110) selects one of the service modes based on the estimated level of the connectivity. Moreover, corresponding computer programs and computer program products are disclosed.
    Type: Grant
    Filed: October 11, 2019
    Date of Patent: May 4, 2021
    Assignee: GUANGDONG OPPO MOBILE TELECOMMUNICATIONS CORP., LTD.
    Inventors: Erik Dahlman, Magnus Frodigh, Mikael Hook, Harald Kallin, Gunnar Mildh, Joachim Sachs
  • Publication number: 20210126726
    Abstract: Methods and apparatus in a fifth-generation wireless communications, including an example method, in a wireless device, that includes receiving a downlink signal comprising an uplink access configuration index, using the uplink access configuration index to identify an uplink access configuration from among a predetermined plurality of uplink access configurations, and transmitting to the wireless communications network according to the identified uplink access configuration. The example method further includes, in the same wireless device, receiving, in a first subframe, a first Orthogonal Frequency-Division Multiplexing (OFDM) transmission formatted according to a first numerology and receiving, in a second subframe, a second OFDM transmission formatted according to a second numerology, the second numerology differing from the first numerology. Variants of this method, corresponding apparatuses, and corresponding network-side methods and apparatuses are also disclosed.
    Type: Application
    Filed: December 31, 2020
    Publication date: April 29, 2021
    Inventors: Stefan Parkvall, Janne Peisa, Gunnar Mildh, Robert Baldemair, Stefan Wager, Jonas Kronander, Karl Werner, Richard Abrahamsson, Ismet Aktas, Peter Alriksson, Junaid Ansari, Shehzad Ali Ashraf, Henrik Asplund, Fredrik Athley, Håkan Axelsson, Joakim Axmon, Johan Axnäs, Kumar Balachandran, Gunnar Bark, Jan-Erik Berg, Andreas Bergström, Håkan Björkegren, Nadia Brahmi, Cagatay Capar, Anders Carlsson, Andreas Cedergren, Mikael Coldrey, Icaro L. J. da Silva, Erik Dahlman, Ali el Essaili, Ulrika Engström, Mårten Ericson, Erik Eriksson, Mikael Fallgren, Rui Fan, Gabor Fodor, Pål Frenger, Jonas Fridén, Jonas Fröberg Olsson, Anders Furuskär, Johan Furuskog, Virgile Garcia, Ather Gattami, Fredrik Gunnarsson, Ulf Gustavsson, Bo Hagerman, Fredrik Harrysson, Ning He, Martin Hessler, Kimmo Hiltunen, Songnam Hong, Dennis Hui, Jörg Huschke, Tim Irnich, Sven Jacobsson, Niklas Jaldén, Simon Järmyr, Zhiyuan Jiang, Niklas Johansson, Martin Johansson, Du Ho Kang, Eleftherios Karipidis, Patrik Karlsson, Ali S. Khayrallah, Caner Kilinc, Göran N. Klang, Sara Landström, Christina Larsson, Gen Li, Lars Lindbom, Robert Lindgren, Bengt Lindoff, Fredrik Lindqvist, Jinhua Liu, Thorsten Lohmar, Qianxi Lu, Lars Manholm, Ivana Maric, Jonas Medbo, Qingyu Miao, Reza Moosavi, Walter Müller, Elena Myhre, Karl Norrman, Bengt-Erik Olsson, Torgny Palenius, Sven Petersson, Jose Luis Pradas, Mikael Prytz, Olav Queseth, Pradeepa Ramachandra, Edgar Ramos, Andres Reial, Thomas Rimhagen, Emil Ringh, Patrik Rugeland, Johan Rune, Joachim Sachs, Henrik Sahlin, Vidit Saxena, Nima Seifi, Yngve Selén, Eliane Semaan, Sachin Sharma, Cong Shi, Johan Sköld, Magnus Stattin, Anders Stjernman, Dennis Sundman, Lars Sundström, Miurel Isabel Tercero Vargas, Claes Tidestav, Sibel Tombaz, Johan Torsner, Hugo Tullberg, Jari Vikberg, Peter von Wrycza, Thomas Walldeen, Pontus Wallentin, Hai Wang, Ke Wang Helmersson, Jianfeng Wang, Yi-Pin Eric Wang, Niclas Wiberg, Emma Wittenmark, Osman Nuri Can Yilmaz, Ali Zaidi, Zhan Zhang, Zhang Zhang, Yanli Zheng
  • Patent number: 10951365
    Abstract: A technique for transferring data on a radio bearer is described. The split radio bearer includes a first layer entity (570) at a first layer of a protocol stack and at least two second layer entities at a second layer of the protocol stack. The second layer is lower than the first layer in the protocol stack. In a method aspect of the technique, the data is received through each of the at least two second layer entities (582, 584). The data received through the at least two second layer entities (582, 584) is validated. If a result of the validation is indicative of an inconsistency in the data received through the at least two second layer entities (582, 584), a retransmission of the data is selectively triggered through at least one of the second layer entities (582, 584).
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: March 16, 2021
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Torsten Dudda, Joachim Sachs
  • Patent number: 10944514
    Abstract: A technique for transferring data in a radio communication is described. As to one method aspect of the technique, the data is received in at least two hybrid automatic repeat request (HARQ) processes (580, 582). For each of the at least two HARQ processes (580, 582), an error detection scheme is performed for the received data. For each of the at least two HARQ processes (580, 582), a feedback (596, 598) is sent based on a logical combination (589) of results (585, 587) of the error detection scheme for the at least two HARQ processes (580, 582).
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: March 9, 2021
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Torsten Dudda, Joachim Sachs, Henning Wiemann, Gustav Wikström
  • Patent number: 10938497
    Abstract: Methods and apparatus in a fifth-generation wireless communications, including an example method, in a wireless device, that includes receiving a downlink signal comprising an uplink access configuration index, using the uplink access configuration index to identify an uplink access configuration from among a predetermined plurality of uplink access configurations, and transmitting to the wireless communications network according to the identified uplink access configuration. The example method further includes, in the same wireless device, receiving, in a first subframe, a first Orthogonal Frequency-Division Multiplexing (OFDM) transmission formatted according to a first numerology and receiving, in a second subframe, a second OFDM transmission formatted according to a second numerology, the second numerology differing from the first numerology. Variants of this method, corresponding apparatuses, and corresponding network-side methods and apparatuses are also disclosed.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: March 2, 2021
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Stefan Parkvall, Janne Peisa, Gunnar Mildh, Robert Baldemair, Stefan Wager, Jonas Kronander, Karl Werner, Richard Abrahamsson, Ismet Aktas, Peter Alriksson, Junaid Ansari, Shehzad Ali Ashraf, Henrik Asplund, Fredrik Athley, Håkan Axelsson, Joakim Axmon, Johan Axnäs, Kumar Balachandran, Gunnar Bark, Jan-Erik Berg, Andreas Bergström, Håkan Björkegren, Nadia Brahmi, Cagatay Capar, Anders Carlsson, Andreas Cedergren, Mikael Coldrey, Icaro L. J. da Silva, Erik Dahlman, Ali el Essaili, Ulrika Engström, Mårten Ericson, Erik Eriksson, Mikael Fallgren, Rui Fan, Gabor Fodor, Pål Frenger, Jonas Fridén, Jonas Fröberg Olsson, Anders Furuskär, Johan Furuskog, Virgile Garcia, Ather Gattami, Fredrik Gunnarsson, Ulf Gustavsson, Bo Hagerman, Fredrik Harrysson, Ning He, Martin Hessler, Kimmo Hiltunen, Songnam Hong, Dennis Hui, Jörg Huschke, Tim Irnich, Sven Jacobsson, Niklas Jaldén, Simon Järmyr, Zhiyuan Jiang, Niklas Johansson, Martin Johansson, Du Ho Kang, Eleftherios Karipidis, Patrik Karlsson, Ali S. Khayrallah, Caner Kilinc, Göran N. Klang, Sara Landstrom, Christina Larsson, Gen Li, Lars Lindbom, Robert Lindgren, Bengt Lindoff, Fredrik Lindqvist, Jinhua Liu, Thorsten Lohmar, Qianxi Lu, Lars Manholm, Ivana Maric, Jonas Medbo, Qingyu Miao, Reza Moosavi, Walter Müller, Elena Myhre, Karl Norrman, Bengt-Erik Olsson, Torgny Palenius, Sven Petersson, Jose Luis Pradas, Mikael Prytz, Olav Queseth, Pradeepa Ramachandra, Edgar Ramos, Andres Reial, Thomas Rimhagen, Emil Ringh, Patrik Rugeland, Johan Rune, Joachim Sachs, Henrik Sahlin, Vidit Saxena, Nima Seifi, Yngve Selén, Eliane Semaan, Sachin Sharma, Cong Shi, Johan Sköld, Magnus Stattin, Anders Stjernman, Dennis Sundman, Lars Sundström, Miurel Isabel Tercero Vargas, Claes Tidestav, Sibel Tombaz, Johan Torsner, Hugo Tullberg, Jari Vikberg, Peter von Wrycza, Thomas Walldeen, Pontus Wallentin, Hai Wang, Ke Wang Helmersson, Jianfeng Wang, Yi-Pin Eric Wang, Niclas Wiberg, Emma Wittenmark, Osman Nuri Can Yilmaz, Ali Zaidi, Zhan Zhang, Zhang Zhang, Yanli Zheng
  • Publication number: 20200404605
    Abstract: According to certain embodiments, a method in a network node for delivering a time synchronization service comprises obtaining a timing accuracy threshold for a time synchronization service provided to a wireless device; determining, based on a first timing accuracy error at the network node and a second timing accuracy error between the network node and the wireless device, that a timing accuracy of the time synchronization service is equal or superior to the timing accuracy threshold, and transmitting the time synchronization service to the wireless device with a timing accuracy equal or superior to the timing accuracy threshold. The method further comprises, in response to determining that the timing accuracy of the time synchronization service is inferior to the timing accuracy threshold, reconfiguring the network node to improve the timing accuracy of the time synchronization service.
    Type: Application
    Filed: February 15, 2019
    Publication date: December 24, 2020
    Inventors: Angelo CENTONZA, Stefano RUFFINI, Joachim SACHS, Magnus SANDGREN, Mårten WAHLSTRÖM
  • Patent number: 10869290
    Abstract: A method in a network node for adapting a numerology and slot structure depending on a position of a wireless device is provided. The position of the wireless device is measured by a timing advance (TA). For example, the method comprises: measuring a timing advance value for a User Equipment (UE); selecting a numerology and slot structure for UE data transmission based on the measured timing advance value; and sending an indication of the selected numerology and slot structure to the UE. A network node for carrying out this method is also provided.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: December 15, 2020
    Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
    Inventors: Shehzad Ali Ashraf, Gustav Wikström, Ismet Aktas, Joachim Sachs
  • Publication number: 20200367182
    Abstract: The present disclosure provides techniques for reducing latency of periodic URLLC transmission and other critical data transmission with low latency requirements. To support periodic URLLC traffic, SPS with repetition is used. Before synchronization is achieved, the base station (300, 500) sends to the UE (400, 600) an SPS configuration for a periodic uplink data transmissions. When the starting time of the data transmission is not known, the base station (300, 600) over-provisions SPS resources for the periodic data transmission. Based on the timing of the data transmissions, the base stations (300, 600) adjusts the timing of the SPS configuration.
    Type: Application
    Filed: November 6, 2018
    Publication date: November 19, 2020
    Inventors: Zhenhua Zou, Ali Behravan, Joachim Sachs
  • Publication number: 20200351969
    Abstract: A method is performed by a network entity of a wireless communication network. A first PDU session is established for a wireless terminal (UE) using a first NodeB base station (MgNB) and a first user plane function entity (UPF1). A second PDU session is established for the wireless terminal (UE) using a second NodeB base station (SgNB) and a second user plane function entity (UPF2). The first and second PDU sessions are established for the wireless terminal (UE) using the first and second NodeB base stations so that the first and second PDU sessions are provided concurrently using dual connectivity DC to provide redundant data paths for communication of data for the wireless terminal (UE) through the wireless communication network.
    Type: Application
    Filed: December 29, 2017
    Publication date: November 5, 2020
    Inventors: György MIKLÓS, János FARKAS, Joachim SACHS, Balázs VARGA
  • Publication number: 20200259896
    Abstract: Techniques for enhancing performance in Industrial Internet-of-Things (IIoT) scenarios, including techniques for time-sensitive networking (TSN) and 5G wireless network integration. An example method, performed by a wireless device, comprises receiving system information (SI) from a radio base station (RBS) of a radio access network (RAN), the SI being indicative of support for TSN through the RBS, and establishing at least one TSN stream with an external data network, through the RBS. The example method further includes receiving a first timing signal from the wireless communications network, via the RBS, receiving a second timing signal from the external TSN data network to which the wireless device is connected, comparing the first timing signal to the second timing signal to determine an offset, and transmitting the offset to the wireless communications network.
    Type: Application
    Filed: February 13, 2019
    Publication date: August 13, 2020
    Inventors: Joachim Sachs, Abdulrahman Alabbasi, Mattias Andersson, Niklas Andgart, Ola Angelsmark, José Araújo, Muhammad Ikram Ashraf, Kumar Balachandran, Robert Baldemair, Rodrigo Berg, Yufei Blankenship, Fedor Chernogorov, John Walter Diachina, Torsten Dudda, Henrik Enbuske, Sorour Falahati, János Farkas, Jonas Fröberg Olsson, Majid Gerami, Harald Gustafsson, Kimmo Hiltunen, Andreas Höglund, Torgny Holmberg, Zsolt Kenesi, András Kern, Kittipong Kittichokechai, Anna Larmo, Johan Lundsjö, György Miklós, Hubertus Munz, Gabor Nemeth, Johannes Nygren, Johan Olsson, Alexandros Palaios, Dhruvin Patel, Joakim Persson, Per Persson, Jose Luis Pradas, Sándor Rácz, Pradeepa Ramachandra, Norbert Reider, Dinand Roeland, Stefano Ruffini, Patrik Salmela, Sara Sandberg, Magnus Sandgren, Paul Schliwa-Bertling, Alexey Shapin, Nianshan Shi, Bikramjit Singh, Per Skarin, Bernard Smeets, Ying Sun, Dennis Sundman, Fredrik Svensson, Malgorzata Svensson, Geza Szabo, Wolfgang Tonutti, Balázs Varga, Mårten Wahlström, Kun Wang, Yi-Pin Eric Wang, Osman Nuri Can Yilmaz, Zhenhua Zou, Miguel Lopez
  • Patent number: 10681765
    Abstract: A method for controlling vehicle-to-vehicle communication is described. The vehicle-to-vehicle communication is performable using a first radio technology for performing the vehicle-to-vehicle communication and a second radio technology for accessing a cellular network. The method comprises determining a distribution scheme for distributing a transmission of vehicle-to-vehicle communication messages among the first radio technology and the second radio technology, and, in accordance with the determined distribution scheme, a vehicle-to-vehicle communication device controlling the transmission of the vehicle-to-vehicle communication messages. Therefore the vehicle-to-vehicle communication can be easily and efficiently controlled and the accordingly controlled vehicle-to-vehicle communication can be performed in an easy, efficient, cost-effective and reliable way.
    Type: Grant
    Filed: May 1, 2018
    Date of Patent: June 9, 2020
    Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
    Inventors: Nadia Brahmi, Joachim Sachs