Patents by Inventor Joakim Axmon

Joakim Axmon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200136792
    Abstract: Embodiments disclosed herein relate to a method in a wireless communication device that operates in an enhanced coverage mode, the enhanced coverage mode comprising sequential repetition of messages sent from the wireless communication device to a network node. An example method includes: receiving a Timing Advance Command TAC from the network node; and adapting a time at which the TAC is applied, wherein a time difference between the time at which the TAC is applied and a time at which the TAC is received shall be greater than or equal to a specified time depending on a type of the used Radio Access Technology, such that application of the TAC does not occur during a period after a first subframe of a repeated uplink transmission till the end of the repeated uplink transmission.
    Type: Application
    Filed: December 9, 2019
    Publication date: April 30, 2020
    Inventors: Joakim Axmon, Johan Bergman, Dandan Hao, Muhammad Kazmi, Santhan Thangarasa
  • Patent number: 10638253
    Abstract: Methods and apparatus in a fifth-generation wireless communications, including an example method, in a wireless device, that includes receiving a downlink signal comprising an uplink access configuration index, using the uplink access configuration index to identify an uplink access configuration from among a predetermined plurality of uplink access configurations, and transmitting to the wireless communications network according to the identified uplink access configuration. The example method further includes, in the same wireless device, receiving, in a first subframe, a first Orthogonal Frequency-Division Multiplexing (OFDM) transmission formatted according to a first numerology and receiving, in a second subframe, a second OFDM transmission formatted according to a second numerology, the second numerology differing from the first numerology. Variants of this method, corresponding apparatuses, and corresponding network-side methods and apparatuses are also disclosed.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: April 28, 2020
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Stefan Parkvall, Janne Peisa, Gunnar Mildh, Robert Baldemair, Stefan Wager, Jonas Kronander, Karl Werner, Richard Abrahamsson, Ismet Aktas, Peter Alriksson, Junaid Ansari, Shehzad Ali Ashraf, Henrik Asplund, Fredrik Athley, Håkan Axelsson, Joakim Axmon, Johan Axnäs, Kumar Balachandran, Gunnar Bark, Jan-Erik Berg, Andreas Bergström, Håkan Björkegren, Nadia Brahmi, Cagatay Capar, Anders Carlsson, Andreas Cedergren, Mikael Coldrey, Icaro L. J. da Silva, Erik Dahlman, Ali El Essaili, Ulrika Engström, Mårten Ericson, Erik Eriksson, Mikael Fallgren, Rui Fan, Gabor Fodor, Pål Frenger, Jonas Fridén, Jonas Fröberg Olsson, Anders Furuskär, Johan Furuskog, Virgile Garcia, Ather Gattami, Fredrik Gunnarsson, Ulf Gustavsson, Bo Hagerman, Fredrik Harrysson, Ning He, Martin Hessler, Kimmo Hiltunen, Songnam Hong, Dennis Hui, Jörg Huschke, Tim Irnich, Sven Jacobsson, Niklas Jaldén, Simon Järmyr, Zhiyuan Jiang, Martin Johansson, Niklas Johansson, Du Ho Kang, Eleftherios Karipidis, Patrik Karlsson, Ali S. Khayrallah, Caner Kilinc, Göran N. Klang, Sara Landström, Christina Larsson, Gen Li, Lars Lindbom, Robert Lindgren, Bengt Lindoff, Fredrik Lindqvist, Jinhua Liu, Thorsten Lohmar, Qianxi Lu, Lars Manholm, Ivana Maric, Jonas Medbo, Qingyu Miao, Reza Moosavi, Walter Müller, Elena Myhre, Karl Norrman, Bengt-Erik Olsson, Torgny Palenius, Sven Petersson, Jose Luis Pradas, Mikael Prytz, Olav Queseth, Pradeepa Ramachandra, Edgar Ramos, Andres Reial, Thomas Rimhagen, Emil Ringh, Patrik Rugeland, Johan Rune, Joachim Sachs, Henrik Sahlin, Vidit Saxena, Nima Seifi, Yngve Selén, Eliane Semaan, Sachin Sharma, Cong Shi, Johan Sköld, Magnus Stattin, Anders Stjernman, Dennis Sundman, Lars Sundström, Miurel Isabel Tercero Vargas, Claes Tidestav, Sibel Tombaz, Johan Torsner, Hugo Tullberg, Jari Vikberg, Peter Von Wrycza, Thomas Walldeen, Pontus Wallentin, Hai Wang, Ke Wang Helmersson, Jianfeng Wang, Yi-Pin Eric Wang, Niclas Wiberg, Emma Wittenmark, Osman Nuri Can Yilmaz, Ali Zaidi, Zhan Zhang, Zhang Zhang, Yanli Zheng
  • Patent number: 10630410
    Abstract: Methods and apparatus in a fifth-generation wireless communications, including an example method, in a wireless device, that includes receiving a downlink signal comprising an uplink access configuration index, using the uplink access configuration index to identify an uplink access configuration from among a predetermined plurality of uplink access configurations, and transmitting to the wireless communications network according to the identified uplink access configuration. The example method further includes, in the same wireless device, receiving, in a first subframe, a first Orthogonal Frequency-Division Multiplexing (OFDM) transmission formatted according to a first numerology and receiving, in a second subframe, a second OFDM transmission formatted according to a second numerology, the second numerology differing from the first numerology. Variants of this method, corresponding apparatuses, and corresponding network-side methods and apparatuses are also disclosed.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: April 21, 2020
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Stefan Parkvall, Janne Peisa, Gunnar Mildh, Robert Baldemair, Stefan Wager, Jonas Kronander, Karl Werner, Richard Abrahamsson, Ismet Aktas, Peter Alriksson, Junaid Ansari, Shehzad Ali Ashraf, Henrik Asplund, Fredrik Athley, Håkan Axelsson, Joakim Axmon, Johan Axnäs, Kumar Balachandran, Gunnar Bark, Jan-Erik Berg, Andreas Bergström, Håkan Björkegren, Nadia Brahmi, Cagatay Capar, Anders Carlsson, Andreas Cedergren, Mikael Coldrey, Icaro L. J. da Silva, Erik Dahlman, Ali El Essaili, Ulrika Engström, Mårten Ericson, Erik Eriksson, Mikael Fallgren, Rui Fan, Gabor Fodor, Pål Frenger, Jonas Fridén, Jonas Fröberg Olsson, Anders Furuskär, Johan Furuskog, Virgile Garcia, Ather Gattami, Fredrik Gunnarsson, Ulf Gustavsson, Bo Hagerman, Fredrik Harrysson, Ning He, Martin Hessler, Kimmo Hiltunen, Songnam Hong, Dennis Hui, Jörg Huschke, Tim Irnich, Sven Jacobsson, Niklas Jaldén, Simon Järmyr, Zhiyuan Jiang, Martin Johansson, Niklas Johansson, Du Ho Kang, Eleftherios Karipidis, Patrik Karlsson, Ali S. Khayrallah, Caner Kilinc, Göran N. Klang, Sara Landström, Christina Larsson, Gen Li, Lars Lindbom, Robert Lindgren, Bengt Lindoff, Fredrik Lindqvist, Jinhua Liu, Thorsten Lohmar, Qianxi Lu, Lars Manholm, Ivana Maric, Jonas Medbo, Qingyu Miao, Reza Moosavi, Walter Müller, Elena Myhre, Karl Norrman, Bengt-Erik Olsson, Torgny Palenius, Sven Petersson, Jose Luis Pradas, Mikael Prytz, Olav Queseth, Pradeepa Ramachandra, Edgar Ramos, Andres Reial, Thomas Rimhagen, Emil Ringh, Patrik Rugeland, Johan Rune, Joachim Sachs, Henrik Sahlin, Vidit Saxena, Nima Seifi, Yngve Selén, Eliane Semaan, Sachin Sharma, Cong Shi, Johan Sköld, Magnus Stattin, Anders Stjernman, Dennis Sundman, Lars Sundström, Miurel Isabel Tercero Vargas, Claes Tidestav, Sibel Tombaz, Johan Torsner, Hugo Tullberg, Jari Vikberg, Peter Von Wrycza, Thomas Walldeen, Pontus Wallentin, Hai Wang, Ke Wang Helmersson, Jianfeng Wang, Yi-Pin Eric Wang, Niclas Wiberg, Emma Wittenmark, Osman Nuri Can Yilmaz, Ali Zaidi, Zhan Zhang, Zhang Zhang, Yanli Zheng
  • Publication number: 20200120671
    Abstract: One or more embodiments herein relate to a method for an uplink transmission timing adjustment in a wireless communication device served by a network node and configured to operate in a coverage enhancement mode. The coverage enhancement mode comprises a repetitive transmission of a first uplink signal during a first repetition period. The method comprises determining a change in a downlink timing (210), determining whether the first repetition period is ongoing (240); and in response to the change in the downlink timing and the first repetition period being ongoing, performing an adjustment of an uplink transmission timing outside the first repetition period (260).
    Type: Application
    Filed: December 16, 2019
    Publication date: April 16, 2020
    Inventors: Joakim Axmon, Dandan Hao, Muhammad Kazmi, Santhan Thangarasa
  • Publication number: 20200120482
    Abstract: Methods and apparatus in a fifth-generation wireless communications, including an example method, in a wireless device, that includes receiving a downlink signal comprising an uplink access configuration index, using the uplink access configuration index to identify an uplink access configuration from among a predetermined plurality of uplink access configurations, and transmitting to the wireless communications network according to the identified uplink access configuration. The example method further includes, in the same wireless device, receiving, in a first subframe, a first Orthogonal Frequency-Division Multiplexing (OFDM) transmission formatted according to a first numerology and receiving, in a second subframe, a second OFDM transmission formatted according to a second numerology, the second numerology differing from the first numerology. Variants of this method, corresponding apparatuses, and corresponding network-side methods and apparatuses are also disclosed.
    Type: Application
    Filed: December 13, 2019
    Publication date: April 16, 2020
    Inventors: Stefan Parkvall, Janne Peisa, Gunnar Mildh, Robert Baldemair, Stefan Wager, Jonas Kronander, Karl Werner, Richard Abrahamsson, Ismet Aktas, Peter Alriksson, Junaid Ansari, Shehzad Ali ASHRAF, Henrik Asplund, Fredrik Athley, Håkan Axelsson, Joakim Axmon, Johan Axnäs, Kumar Balachandran, Gunnar Bark, Jan-Erik BERG, Andreas Bergström, Håkan Björkegren, Nadia Brahmi, Cagatay Capar, Anders Carlsson, Andreas Cedergren, Mikael Coldrey, Icaro L. J. da Silva, Erik Dahlman, Ali el Essaili, Ulrika Engström, Mårten Ericson, Erik Eriksson, Mikael Fallgren, Rui Fan, Gabor Fodor, Pål Frenger, Jonas Fridén, Jonas Fröberg Olsson, Anders Furuskär, Johan Furuskog, Virgile Garcia, Ather Gattami, Fredrik Gunnarsson, Ulf Gustavsson, Bo Hagerman, Fredrik Harrysson, Ning He, Martin Hessler, Kimmo Hiltunen, Songnam Hong, Dennis Hui, Jörg Huschke, Tim Irnich, Sven Jacobsson, Niklas Jaldén, Simon Järmyr, Zhiyuan Jiang, Niklas Johansson, Martin Johansson, Du Ho Kang, Eleftherios Karipidis, Patrik Karlsson, Ali S. Khayrallah, Caner Kilinc, Göran N. Klang, Sara Landstrom, Christina Larsson, Gen Li, Lars Lindbom, Robert Lindgren, Bengt Lindoff, Fredrik Lindqvist, Jinhua Liu, Thorsten Lohmar, Qianxi Lu, Lars Manholm, Ivana Maric, Jonas Medbo, Qingyu Miao, Reza Moosavi, Walter Müller, Elena Myhre, Karl Norrman, Bengt-Erik Olsson, Torgny Palenius, Sven Petersson, Jose Luis Pradas, Mikael Prytz, Olav Queseth, Pradeepa Ramachandra, Edgar Ramos, Andres Reial, Thomas Rimhagen, Emil Ringh, Patrik Rugeland, Johan Rune, Joachim Sachs, Henrik Sahlin, Vidit Saxena, Nima Seifi, Yngve Selén, Eliane Semaan, Sachin Sharma, Cong Shi, Johan Sköld, Magnus Stattin, Anders Stjernman, Dennis Sundman, Lars Sundström, Miurel Isabel Tercero Vargas, Claes Tidestav, Sibel Tombaz, Johan Torsner, Hugo Tullberg, Jari Vikberg, Peter von Wrycza, Thomas Walldeen, Pontus Wallentin, Hai Wang, Ke Wang Helmersson, Jianfeng Wang, Yi-Pin Eric Wang, Niclas Wiberg, Emma Wittenmark, Osman Nuri Can Yilmaz, Ali Zaidi, Zhan Zhang, Zhang Zhang, Yanli Zheng
  • Publication number: 20200112404
    Abstract: Disclosed is a receiver circuit comprising an analog-to-digital converter (ADC) circuit having an analog input, a clock input, and a digital output, and a clock divider circuit having a reference clock input and a phase selector input, and having a clock output coupled to the clock input of the ADC circuit. The clock divider circuit is configured to divide a reference clock signal coupled to the reference clock input at a reference clock frequency, to produce a clock output signal at an ADC clock frequency, at the clock output, such that the reference clock frequency is an integer multiple N of the ADC clock frequency. The clock divider circuit is further configured to select from among a plurality of selectable phases of the clock output signal, responsive to a phase selector signal applied to the phase selector input.
    Type: Application
    Filed: February 14, 2017
    Publication date: April 9, 2020
    Inventors: Yuhang Liu, Joakim Axmon, Michael Breschel, Johan Hill
  • Publication number: 20200097028
    Abstract: A server node (240, 340) and method therein for assisting a first wireless communication device (210, 310) and a second wireless communication device (220, 320) to seek each other in a wireless communication network are disclosed. The server node inquires positioning and movement information of the first and second devices and obtains information on a relative position between the first and the second devices. The server node then sends instructions to at least one of the first and second devices based on the information on the relative position.
    Type: Application
    Filed: December 23, 2016
    Publication date: March 26, 2020
    Inventors: Joakim Axmon, Arthur T. G. Fuller, Esther Sienkiewicz
  • Publication number: 20200099566
    Abstract: Detection of Narrow-Band IOT (NB-IOT) Synchronization signal and Cyclic Prefix length determination at UE. The detection method implements symbol level correlation, comprising: filtering the radio signal with a plurality of matched filters to obtain a correlation for each OFDM symbol in the synchronization signal, wherein each matched filter provides a correlation with one OFDM symbol in the synchronization signal; delaying and combining the outputs of the plurality of matched filters in a first way to provide a first combined output for the normal cyclic prefix configuration and delaying and combining the outputs of the plurality of matched filters in a second way to provide a second combined output for the extended cyclic prefix configuration; and detecting a correlation peak indicative of the synchronization signal in one of the first or second combined outputs. The present disclosure also relates to a user equipment including the apparatus.
    Type: Application
    Filed: December 22, 2016
    Publication date: March 26, 2020
    Inventors: Joakim Axmon, Dandan Hao
  • Publication number: 20200091995
    Abstract: A terrestrial network node of a terrestrial mobile communication network is operated to simultaneously serve terrestrial and aerial coverage on a same carrier frequency. Such operation includes directing a first reception beam towards an aerial radio node. A second reception beam is directed towards a user equipment in the terrestrial mobile communication network. The signal received in the first reception beam is filtered to create a replica of a signal transmitted by the aerial radio node as received by the second reception beam. The replica is subtracted from the signal received by the second reception beam.
    Type: Application
    Filed: April 27, 2018
    Publication date: March 19, 2020
    Inventors: Joakim Axmon, Esther Sienkiewicz
  • Publication number: 20200084814
    Abstract: A wireless communication device (140) and method therein for managing connection states in a wireless communication system (100) are disclosed. The wireless communication device (140) comprises at least two Subscriber Identity Modules, SIMs, in which a first SIM is associated to a first original connection state towards a first network node (111), a second SIM is associated to a second original connection state towards a second network node (121). The wireless communication device (140) obtains a position of the wireless communication device (140) and determines a priority list for the at least two SIMs based on the obtained position. The wireless communication device (140) further determines whether the respective connection states of the first and second SIMs have conflicting needs in radio resources.
    Type: Application
    Filed: June 28, 2016
    Publication date: March 12, 2020
    Inventors: Bengt Lindoff, Magnus Åström, Joakim Axmon
  • Patent number: 10588072
    Abstract: The wireless apparatus and network node disclosed herein facilitate the selection and use of one of multiple RATs for communications between the wireless apparatus and the network node. The selected RAT provides a lower energy consumption at the wireless apparatus for the communications with the network node. To that end, the wireless apparatus selects between at least two RATs, e.g., first and second RATs, where the first and second RATs are both coordinated by a network node in communication with the wireless apparatus, and where a system bandwidth of the second RAT and a system bandwidth of the first RAT are both comprised within a third system bandwidth of a third RAT coordinated by the network node.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: March 10, 2020
    Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
    Inventors: Bengt Lindoff, Joakim Axmon, Muhammad Kazmi, Santhan Thangarasa
  • Patent number: 10588037
    Abstract: In a wireless communication device, a subset of available carriers is maintained as monitored carriers for performing measurements and the set of monitored carriers is replenished from only a subset of available carriers. Consequently, the wireless communication device does not have to measure a large number of carriers when looking for optimal radio network coverage. At the same time the method ensures that there is always an available “bucket” of monitored carriers that may be used for signal measurement. This means that the wireless communication device does not have to use a lot of processing resources (and thereby battery power) while still ensuring stable radio contact with the radio network or networks.
    Type: Grant
    Filed: July 9, 2014
    Date of Patent: March 10, 2020
    Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (publ)
    Inventors: Ali Nader, Joakim Axmon
  • Patent number: 10555297
    Abstract: One or more embodiments herein relate to a method for an uplink transmission timing adjustment in a wireless communication device served by a network node and configured to operate in a coverage enhancement mode. The coverage enhancement mode comprises a repetitive transmission of a first uplink signal during a first repetition period. The method comprises determining a change in a downlink timing (210), determining whether the first repetition period is ongoing (240); and in response to the change in the downlink timing and the first repetition period being ongoing, performing an adjustment of an uplink transmission timing outside the first repetition period (260).
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: February 4, 2020
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Joakim Axmon, Dandan Hao, Muhammad Kazmi, Santhan Thangarasa
  • Patent number: 10547373
    Abstract: A flight transceiver station (FTS) mounted onboard an aircraft communicates with one or more terrestrial transceiver points by determining, for a future moment in time, a position of the flight transceiver station in 3-dimensional space; an attitude of the flight transceiver station; one or more respective directions from the position of the flight transceiver station to the one or more terrestrial transceiver points; respective radial velocities between the flight transceiver station and the one or more terrestrial transceiver points. The FTS also determines, based on the respective directions and attitudes, beamforming weights for one or more transmit beams towards each of the one or more terrestrial transceiver points; and predicts, based on the respective radial velocities, respective Doppler shifts of a carrier frequency used between the flight transceiver station and the one or more terrestrial transceiver points.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: January 28, 2020
    Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (publ)
    Inventors: Joakim Axmon, Christopher Callender, Mikael Prytz, Imadur Rahman, Esther Sienkiewicz
  • Publication number: 20200028745
    Abstract: Methods and apparatus in a fifth-generation wireless communications network, including an example method, in a wireless device, that includes determining a reporting quality threshold for a parameter related to channel state information (CSI); performing a measurement for each of a plurality of beams from a first predetermined set of beams for evaluation; evaluating the measurement for each of the plurality of beams against the reporting quality threshold; discontinuing the performing and evaluating of measurements in response to determining that the reporting quality threshold is met for one of the beams, such that one or more beams in the first predetermined set of beams are not measured and evaluated; and reporting, to the wireless communications network, CSI for the one of the beams.
    Type: Application
    Filed: May 16, 2019
    Publication date: January 23, 2020
    Inventors: Stefan Parkvall, Janne Peisa, Gunnar Mildh, Robert Baldemair, Stefan Wager, Jonas Kronander, Karl Werner, Richard Abrahamsson, Ismet Aktas, Peter Alriksson, Junaid Ansari, Shehzad Ali Ashraf, Henrik Asplund, Fredrik Athley, Håkan Axelsson, Joakim Axmon, Johan Axnäs, Kumar Balachandran, Gunnar Bark, Jan-Erik Berg, Andreas Bergström, Håkan Björkegren, Nadia Brahmi, Cagatay Capar, Anders Carlsson, Andreas Cedergren, Mikael Coldrey, Icaro L. J. da Silva, Erik Dahlman, Ali El Essaili, Ulrika Engström, Mårten Ericson, Erik Eriksson, Mikael Fallgren, Rui Fan, Gabor Fodor, Pål Frenger, Jonas Fridén, Jonas Fröberg Olsson, Anders Furuskär, Johan Furuskog, Virgile Garcia, Ather Gattami, Fredrik Gunnarsson, Ulf Gustavsson, Bo Hagerman, Fredrik Harrysson, Ning He, Martin Hessler, Kimmo Hiltunen, Songnam Hong, Dennis Hui, Jörg Huschke, Tim Irnich, Sven Jacobsson, Niklas Jaldén, Simon Järmyr, Zhiyuan Jiang, Martin Johansson, Niklas Johansson, Du Ho Kang, Eleftherios Karipidis, Patrik Karlsson, Ali S. Khayrallah, Caner Kilinc, Göran N. Klang, Sara Landström, Christina Larsson, Gen Li, Bo Lincoln, Lars Lindbom, Robert Lindgren, Bengt Lindoff, Fredrik Lindqvist, Jinhua Liu, Thorsten Lohmar, Qianxi Lu, Lars Manholm, Ivana Maric, Jonas Medbo, Qingyu Miao, Reza Moosavi, Walter Müller, Elena Myhre, Johan Nilsson, Karl Norrman, Bengt-Erik Olsson, Torgny Palenius, Sven Petersson, Jose Luis Pradas, Mikael Prytz, Olav Queseth, Pradeepa Ramachandra, Edgar Ramos, Andres Reial, Thomas Rimhagen, Emil Ringh, Patrik Rugeland, Johan Rune, Joachim Sachs, Henrik Sahlin, Vidit Saxena, Nima Seifi, Yngve Selén, Eliane Semaan, Sachin Sharma, Cong Shi, Johan Sköld, Magnus Stattin, Anders Stjernman, Dennis Sundman, Lars Sundström, Miurel Isabel Tercero Vargas, Claes Tidestav, Sibel Tombaz, Johan Torsner, Hugo Tullberg, Jari Vikberg, Peter Von Wrycza, Thomas Walldeen, Anders Wallén, Pontus Wallentin, Hai Wang, Ke Wang Helmersson, Jianfeng Wang, Yi-Pin Eric Wang, Niclas Wiberg, Emma Wittenmark, Osman Nuri Can Yilmaz, Ali Zaidi, Zhan Zhang, Zhang Zhang, Yanli Zheng
  • Patent number: 10541802
    Abstract: Embodiments disclosed herein relate to a method in a wireless communication device that operates in an enhanced coverage mode, the enhanced coverage mode comprising sequential repetition of messages sent from the wireless communication device to a network node. An example method includes: receiving a Timing Advance Command TAC from the network node; and adapting a time at which the TAC is applied, wherein a time difference between the time at which the TAC is applied and a time at which the TAC is received shall be greater than or equal to a specified time depending on a type of the used Radio Access Technology, such that application of the TAC does not occur during a period after a first subframe of a repeated uplink transmission till the end of the repeated uplink transmission.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: January 21, 2020
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Joakim Axmon, Johan Bergman, Dandan Hao, Muhammad Kazmi, Santhan Thangarasa
  • Patent number: 10536316
    Abstract: The solution presented herein discloses a method of reducing inter-symbol jitter caused while processing each of a plurality of OFDM symbols in a received signal. For each of the plurality of OFDM symbols, the method comprises receiving a plurality of radio samples produced by a sampling of an OFDM symbol at a reduced sampling rate, where the reduced sampling rate causes inter-symbol jitter between the plurality of OFDM symbols. The method further comprises determining a sample offset corresponding to a symbol number for the OFDM symbol, transforming the samples of the OFDM symbol into a plurality of frequency-domain resource elements, and determining a phase offset for each of the resource elements using the sample offset. The method then reduces the inter-symbol jitter by rotating each resource element using the corresponding phase offset to generate phase-rotated resource elements.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: January 14, 2020
    Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
    Inventors: Joakim Axmon, Dandan Hao, Bengt Lindoff
  • Patent number: 10536870
    Abstract: The disclosure provides a method (90) performed in a network node (2) for handling simultaneous measurement signaling and data communication with a communications device (3). The method (90) comprises transmitting (91) data to the communication device (3) using a transmission mode corresponding to the communication device (3) using a first number of reception elements (123, 125); establishing (92) a need for the communication device (3) to perform measurements and a capability of the communication device (3) for receiving measurement signaling using a second number of reception elements (123, 125) while receiving data using a reduced number of reception elements (123, 125); sending (93), to the communication device (3), a request to initialize the measurements, the request comprising a measurement configuration; and transmitting (94) the data using a transmission mode corresponding to the communication device (3) using the reduced number of reception elements (123, 125) for the data.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: January 14, 2020
    Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
    Inventors: Joakim Axmon, Magnus Åström
  • Patent number: 10516991
    Abstract: There is provided a method of a wireless terminal arranged to operate in a communication network including communication capabilities according to a first radio access technology, RAT, and a second RAT with the wireless terminal. The method comprises transmitting data to a network node of the communication network or connected to the communication network via a connection using the first RAT. The data enables the network node to determine information about a position of the wireless terminal. The method further comprises receiving a set of parameters from the network node via the connection using the first RAT. The set of parameters is related to any of cell search and system information search for the second RAT. The method further comprises performing cell search or system information search for the second RAT based on the set of parameters.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: December 24, 2019
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Andres Reial, Joakim Axmon, Håkan B. Björkegren, Gunnar Mildh, Johan Nilsson
  • Publication number: 20190387409
    Abstract: Method performed by a base station (111). The base station (111) determines (203) a reporting configuration for a UE (130) to report power headroom to the base station (111). The determining (203) is based on a power class of the UE (130). The reporting configuration comprises a plurality of reportable values. Each reportable value corresponds to a respective range of values of a power headroom. The respective range each reportable value corresponds to is a function of a power class of the UE (130). The base station (111) receives (204), from the UE (130), a reportable value from the plurality of reportable values. The respective range of values of the power headroom indicated by the received reportable value is based on the determined reporting configuration. A method performed by the UE (130) is also disclosed. The UE (130) obtains (302) the reporting configuration, and transmits (304), to the base station (111), the reportable value.
    Type: Application
    Filed: December 20, 2017
    Publication date: December 19, 2019
    Inventors: Santhan Thangarasa, Joakim Axmon, Muhammad Kazmi