Patents by Inventor Joan Carboni

Joan Carboni has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10954286
    Abstract: The present invention relates to bispecific molecules comprising an EGFR binding domain and a distinct IGFIR binding domain for use in diagnostic, research and therapeutic applications. The invention further relates to cells comprising such proteins, polynucleotide encoding such proteins or fragments thereof, and vectors comprising the polynucleotides encoding the innovative proteins. Exemplary bispecific molecules include antibody-like protein dimers based on the tenth fibronectin type III domain.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: March 23, 2021
    Assignee: BRISTOL-MYERS SQUIBB COMPANY
    Inventors: Stuart Emanuel, Linda Engle, Ray Camphausen, Martin C. Wright, Ginger Chao Rakestraw, Marco Gottardis, Joan Carboni
  • Publication number: 20210017252
    Abstract: The present invention relates to multivalent polypeptides comprising at least two fibronectin scaffold domains connected via a polypeptide linker. The invention also relates to multivalent polypeptides for use in diagnostic, research and therapeutic applications. The invention further relates to cells comprising such proteins, polynucleotide encoding such proteins or fragments thereof, and to vectors comprising the polynucleotides encoding the innovative proteins.
    Type: Application
    Filed: August 6, 2020
    Publication date: January 21, 2021
    Inventors: Ray CAMPHAUSEN, Eric FURFINE, Irvith M. CARVAJAL, H. Nicholas MARSH, Marco GOTTARDIS, Joan CARBONI, Ricardo ATTAR
  • Patent number: 10774130
    Abstract: The present invention relates to multivalent polypeptides comprising at least two fibronectin scaffold domains connected via a polypeptide linker. The invention also relates to multivalent polypeptides for use in diagnostic, research and therapeutic applications. The invention further relates to cells comprising such proteins, polynucleotide encoding such proteins or fragments thereof, and to vectors comprising the polynucleotides encoding the innovative proteins.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: September 15, 2020
    Assignee: BRISTOL-MYERS SQUIBB COMPANY
    Inventors: Ray Camphausen, Eric Furfine, Irvith M. Carvajal, H. Nicholas Marsh, Marco Gottardis, Joan Carboni, Ricardo Attar
  • Publication number: 20190153069
    Abstract: The present invention relates to bispecific molecules comprising an EGFR binding domain and a distinct IGFIR binding domain for use in diagnostic, research and therapeutic applications. The invention further relates to cells comprising such proteins, polynucleotide encoding such proteins or fragments thereof, and vectors comprising the polynucleotides encoding the innovative proteins. Exemplary bispecific molecules include antibody-like protein dimers based on the tenth fibronectin type III domain.
    Type: Application
    Filed: November 30, 2018
    Publication date: May 23, 2019
    Inventors: Stuart EMANUEL, Linda ENGLE, Ray CAMPHAUSEN, Martin C. WRIGHT, Ginger Chao RAKESTRAW, Marco GOTTARDIS, Joan CARBONI
  • Patent number: 10183987
    Abstract: The present invention relates to bispecific molecules comprising an EGFR binding domain and a distinct IGFIR binding domain for use in diagnostic, research and therapeutic applications. The invention further relates to cells comprising such proteins, polynucleotide encoding such proteins or fragments thereof, and vectors comprising the polynucleotides encoding the innovative proteins. Exemplary bispecific molecules include antibody-like protein dimers based on the tenth fibronectin type III domain.
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: January 22, 2019
    Assignee: BRISTOL-MYERS SQUIBB COMPANY
    Inventors: Stuart Emanuel, Linda Engle, Ray Camphausen, Martin C. Wright, Ginger Chao Rakestraw, Marco Gottardis, Joan Carboni
  • Publication number: 20180265572
    Abstract: The present invention relates to multivalent polypeptides comprising at least two fibronectin scaffold domains connected via a polypeptide linker. The invention also relates to multivalent polypeptides for use in diagnostic, research and therapeutic applications. The invention further relates to cells comprising such proteins, polynucleotide encoding such proteins or fragments thereof, and to vectors comprising the polynucleotides encoding the innovative proteins.
    Type: Application
    Filed: January 10, 2018
    Publication date: September 20, 2018
    Applicant: BRISTOL-MYERS SQUIBB COMPANY
    Inventors: Ray CAMPHAUSEN, Eric FURFINE, Irvith M. CARVAJAL, H. Nicholas MARSH, Marco GOTTARDIS, Joan CARBONI, Ricardo ATTAR
  • Patent number: 9902762
    Abstract: The present invention relates to multivalent polypeptides comprising at least two fibronectin scaffold domains connected via a polypeptide linker. The invention also relates to multivalent polypeptides for use in diagnostic, research and therapeutic applications. The invention further relates to cells comprising such proteins, polynucleotide encoding such proteins or fragments thereof, and to vectors comprising the polynucleotides encoding the innovative proteins.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: February 27, 2018
    Assignee: BRISTOL-MYERS SQUIBB COMPANY
    Inventors: Ray Camphausen, Eric Furfine, Irvith M. Carvajal, H. Nicholas Marsh, Marco Gottardis, Joan Carboni, Ricardo Attar
  • Publication number: 20180037631
    Abstract: The present invention relates to bispecific molecules comprising an EGFR binding domain and a distinct IGFIR binding domain for use in diagnostic, research and therapeutic applications. The invention further relates to cells comprising such proteins, polynucleotide encoding such proteins or fragments thereof, and vectors comprising the polynucleotides encoding the innovative proteins. Exemplary bispecific molecules include antibody-like protein dimers based on the tenth fibronectin type III domain.
    Type: Application
    Filed: August 23, 2017
    Publication date: February 8, 2018
    Inventors: Stuart EMANUEL, Linda ENGLE, Ray CAMPHAUSEN, Martin C. WRIGHT, Ginger Chao RAKESTRAW, Marco GOTTARDIS, Joan CARBONI
  • Patent number: 9771411
    Abstract: The present invention relates to bispecific molecules comprising an EGFR binding domain and a distinct IGFIR binding domain for use in diagnostic, research and therapeutic applications. The invention further relates to cells comprising such proteins, polynucleotide encoding such proteins or fragments thereof, and vectors comprising the polynucleotides encoding the innovative proteins. Exemplary bispecific molecules include antibody-like protein dimers based on the tenth fibronectin type III domain.
    Type: Grant
    Filed: March 20, 2015
    Date of Patent: September 26, 2017
    Assignee: BRISTOL-MYERS SQUIBB COMPANY
    Inventors: Stuart Emanuel, Linda Engle, Ray Camphausen, Martin C. Wright, Ginger Chao Rakestraw, Marco Gottardis, Joan Carboni
  • Publication number: 20150259398
    Abstract: The present invention relates to bispecific molecules comprising an EGFR binding domain and a distinct IGFIR binding domain for use in diagnostic, research and therapeutic applications. The invention further relates to cells comprising such proteins, polynucleotide encoding such proteins or fragments thereof, and vectors comprising the polynucleotides encoding the innovative proteins. Exemplary bispecific molecules include antibody-like protein dimers based on the tenth fibronectin type III domain.
    Type: Application
    Filed: March 20, 2015
    Publication date: September 17, 2015
    Inventors: Stuart EMANUEL, Linda ENGLE, Ray CAMPHAUSEN, Martin C. WRIGHT, Ginger Chao RAKESTRAW, Marco GOTTARDIS, Joan CARBONI
  • Patent number: 9017655
    Abstract: The present invention relates to bispecific molecules comprising an EGFR binding domain and a distinct IGFIR binding domain for use in diagnostic, research and therapeutic applications. The invention further relates to cells comprising such proteins, polynucleotide encoding such proteins or fragments thereof, and vectors comprising the polynucleotides encoding the innovative proteins. Exemplary bispecific molecules include antibody-like protein dimers based on the tenth fibronectin type III domain.
    Type: Grant
    Filed: December 3, 2012
    Date of Patent: April 28, 2015
    Assignee: Bristol-Myers Squibb Company
    Inventors: Stuart Emanuel, Linda Engle, Ray Camphausen, Martin C. Wright, Ginger Chao Rakestraw, Marco Gottardis, Joan Carboni
  • Publication number: 20140349929
    Abstract: The present invention relates to multivalent polypeptides comprising at least two fibronectin scaffold domains connected via a polypeptide linker. The invention also relates to multivalent polypeptides for use in diagnostic, research and therapeutic applications. The invention further relates to cells comprising such proteins, polynucleotide encoding such proteins or fragments thereof, and to vectors comprising the polynucleotides encoding the innovative proteins.
    Type: Application
    Filed: March 28, 2014
    Publication date: November 27, 2014
    Applicant: BRISTOL-MYERS SQUIBB COMPANY
    Inventors: Ray CAMPHAUSEN, Eric FURFINE, Irvith M. CARVAJAL, H. Nicholas MARSH, Marco GOTTARDIS, Joan CARBONI, Ricardo ATTAR
  • Patent number: 8728483
    Abstract: The present invention relates to multivalent polypeptides comprising at least two fibronectin scaffold domains connected via a polypeptide linker. The invention also relates to multivalent polypeptides for use in diagnostic, research and therapeutic applications. The invention further relates to cells comprising such proteins, polynucleotide encoding such proteins or fragments thereof, and to vectors comprising the polynucleotides encoding the innovative proteins.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: May 20, 2014
    Assignee: Bristol-Myers Squibb Company
    Inventors: Ray Camphausen, Eric Furfine, Irvith M. Carvajal, H. Nicholas Marsh, Marco Gottardis, Joan Carboni, Ricardo Attar
  • Publication number: 20130012435
    Abstract: The present invention relates to multivalent polypeptides comprising at least two fibronectin scaffold domains connected via a polypeptide linker. The invention also relates to multivalent polypeptides for use in diagnostic, research and therapeutic applications. The invention further relates to cells comprising such proteins, polynucleotide encoding such proteins or fragments thereof, and to vectors comprising the polynucleotides encoding the innovative proteins.
    Type: Application
    Filed: June 26, 2012
    Publication date: January 10, 2013
    Applicant: Bristol-Myers Squibb Company
    Inventors: Ray Camphausen, Eric Furfine, Irvith M. Carvajal, H. Nicholas Marsh, Marco Gottardis, Joan Carboni, Ricardo Attar
  • Patent number: 8343501
    Abstract: The present invention relates to bispecific molecules comprising an EGFR binding domain and a distinct IGFIR binding domain for use in diagnostic, research and therapeutic applications. The invention further relates to cells comprising such proteins, polynucleotide encoding such proteins or fragments thereof, and vectors comprising the polynucleotides encoding the innovative proteins. Exemplary bispecific molecules include antibody-like protein dimers based on the tenth fibronectin type III domain.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: January 1, 2013
    Assignee: Bristol-Myers Squibb Company
    Inventors: Stuart Emanuel, Linda Engle, Ray Camphausen, Martin C. Wright, Ginger Chao, Marco Gottardis, Joan Carboni
  • Publication number: 20120220594
    Abstract: A method for treating cancer comprising identifying a mammal that overexpresses breast cancer resistance protein; and administering to said mammal a pharmaceutical composition comprising a therapeutically effective amount of ixabepilone. In one aspect, the mammal is not administered an agent that is susceptible to breast cancer resistance protein overexpression resistance. In another aspect, the cancer is a solid tumor.
    Type: Application
    Filed: October 29, 2010
    Publication date: August 30, 2012
    Inventors: Fei Huang, Joan Carboni
  • Patent number: 8221765
    Abstract: The present invention relates to multivalent polypeptides comprising at least two fibronectin scaffold domains connected via a polypeptide linker. The invention also relates to multivalent polypeptides for use in diagnostic, research and therapeutic applications. The invention further relates to cells comprising such proteins, polynucleotide encoding such proteins or fragments thereof, and to vectors comprising the polynucleotides encoding the innovative proteins.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: July 17, 2012
    Assignee: Bristol-Myers Squibb Company
    Inventors: Ray Camphausen, Eric Furfine, Irvith M. Carvajal, H. Nicholas Marsh, Marco Gottardis, Joan Carboni, Ricardo Attar
  • Publication number: 20100179094
    Abstract: The present invention relates to bispecific molecules comprising an EGFR binding domain and a distinct IGFIR binding domain for use in diagnostic, research and therapeutic applications. The invention further relates to cells comprising such proteins, polynucleotide encoding such proteins or fragments thereof, and vectors comprising the polynucleotides encoding the innovative proteins. Exemplary bispecific molecules include antibody-like protein dimers based on the tenth fibronectin type III domain.
    Type: Application
    Filed: November 24, 2009
    Publication date: July 15, 2010
    Applicant: Bristol-Myers Squibb Company
    Inventors: Stuart Emanuel, Linda Engle, Ray Camphausen, Martin C. Wright, Ginger Chao, Marco Gottardis, Joan Carboni
  • Publication number: 20090299040
    Abstract: The present invention relates to multivalent polypeptides comprising at least two fibronectin scaffold domains connected via a polypeptide linker. The invention also relates to multivalent polypeptides for use in diagnostic, research and therapeutic applications. The invention further relates to cells comprising such proteins, polynucleotide encoding such proteins or fragments thereof, and to vectors comprising the polynucleotides encoding the innovative proteins.
    Type: Application
    Filed: May 22, 2009
    Publication date: December 3, 2009
    Applicant: BRISTOL-MYERS SQUIBB COMPANY
    Inventors: RAY CAMPHAUSEN, ERIC FURFINE, IRVITH M. CARVAJAL, H. NICHOLAS MARSH, MARCO GOTTARDIS, JOAN CARBONI, RICARDO ATTAR
  • Publication number: 20050075358
    Abstract: Methods for treating cancer using IGF1R inhibitors in combination with insulin sensitizers are provided for the treatment or prevention of hyperglycemia.
    Type: Application
    Filed: October 5, 2004
    Publication date: April 7, 2005
    Inventors: Joan Carboni, Ricardo Attar, Marco Gottardis, Jean Whaley, Thomas Harrity