Patents by Inventor Joe Kiani

Joe Kiani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11816973
    Abstract: A medical sanitation device may include a detector for detecting the physical presence of a clinician token within a detection area in the vicinity of the medical sanitation device. The clinician token may be indicative of the identity of a clinician. The medical sanitation device also includes a sanitation module configured to be used by the clinician to perform a sanitation task. Detection of a clinician in proximity to the medical sanitation device may be used to at least partially control access to, or operation of, a medical patient monitoring device.
    Type: Grant
    Filed: October 12, 2021
    Date of Patent: November 14, 2023
    Assignee: Masimo Corporation
    Inventor: Massi Joe Kiani
  • Publication number: 20220262230
    Abstract: A medical sanitation device may include a detector for detecting the physical presence of a clinician token within a detection area in the vicinity of the medical sanitation device. The clinician token may be indicative of the identity of a clinician. The medical sanitation device also includes a sanitation module configured to be used by the clinician to perform a sanitation task. Detection of a clinician in proximity to the medical sanitation device may be used to at least partially control access to, or operation of, a medical patient monitoring device.
    Type: Application
    Filed: October 12, 2021
    Publication date: August 18, 2022
    Inventor: Massi Joe Kiani
  • Patent number: 11176801
    Abstract: A medical sanitation device may include a detector for detecting the physical presence of a clinician token within a detection area, in the vicinity of the medical sanitation device. The clinician token may be indicative of the identity of a clinician. The medical sanitation device also includes a sanitation module configured to be used by the clinician to perform a sanitation task. Detection of a clinician in proximity to the medical sanitation device may be used to at least partially control access to, or operation of, a medical patient monitoring device.
    Type: Grant
    Filed: April 25, 2016
    Date of Patent: November 16, 2021
    Assignee: Masimo Corporation
    Inventor: Massi Joe Kiani
  • Publication number: 20160314260
    Abstract: A medical sanitation device may include a detector for detecting the physical presence of a clinician token within a detection area, in the vicinity of the medical sanitation device. The clinician token may be indicative of the identity of a clinician. The medical sanitation device also includes a sanitation module configured to be used by the clinician to perform a sanitation task. Detection of a clinician in proximity to the medical sanitation device may be used to at least partially control access to, or operation of, a medical patient monitoring device.
    Type: Application
    Filed: April 25, 2016
    Publication date: October 27, 2016
    Inventor: Massi Joe Kiani
  • Patent number: 9339220
    Abstract: A physiological monitor for determining blood oxygen saturation of a medical patient includes a sensor, a signal processor and a display. The sensor includes at least three light emitting diodes. Each light emitting diode is adapted to emit light of a different wavelength. The sensor also includes a detector, where the detector is adapted to receive light from the three light emitting diodes after being attenuated by tissue. The detector generates an output signal based at least in part upon the received light. The signal processor determines blood oxygen saturation based at least upon the output signal, and the display provides an indication of the blood oxygen saturation.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: May 17, 2016
    Assignee: MASIMO CORPORATION
    Inventors: Marcelo M. Lamego, Mohamed Diab, Walter M. Weber, Ammar Al-Ali, Joe Kiani
  • Patent number: 8840549
    Abstract: A modular patient monitor has a docking station configured to accept a handheld monitor. The docking station has standalone patient monitoring functionality with respect to a first set of parameters. At least some of the first parameter set are displayed simultaneously on a full-sized screen integrated with the docking station. The handheld monitor also has standalone patient monitoring functionality with respect to a second set of parameters. At least some of the second set of parameters are displayed simultaneously on a handheld-sized screen integrated with the handheld monitor. The docking station has a port configured to accept the handheld monitor. While the handheld monitor is docket in the port, the docking station functionally combines the first set of parameters and the second set of parameters, and at least some of the combined first and second sets of parameters are displayed simultaneously on the full-sized screen.
    Type: Grant
    Filed: September 24, 2007
    Date of Patent: September 23, 2014
    Assignee: Masimo Corporation
    Inventors: Ammar Al-Ali, Paul Jansen, Massi Joe Kiani, Anand Sampath
  • Patent number: 8581732
    Abstract: Embodiments of the present disclosure include a handheld multi-parameter patient monitor capable of determining multiple physiological parameters from the output of a light sensitive detector capable of detecting light attenuated by body tissue. For example, in an embodiment, the monitor is capable of advantageously and accurately displaying one or more of pulse rate, plethysmograph data, perfusion quality, signal confidence, and values of blood constituents in body tissue, including for example, arterial carbon monoxide saturation (“HbCO”), methemoglobin saturation (“HbMet”), total hemoglobin (“Hbt”), arterial oxygen saturation (“SpO2”), fractional arterial oxygen saturation (“SpaO2”), or the like. In an embodiment, the monitor displays a line associated with a patient wellness level.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: November 12, 2013
    Assignee: Carcacor Laboratories, Inc.
    Inventors: Ammar Al-Ali, Joe Kiani
  • Patent number: 8423106
    Abstract: A physiological monitor for determining blood oxygen saturation of a medical patient includes a sensor, a signal processor and a display. The sensor includes at least three light emitting diodes. Each light emitting diode is adapted to emit light of a different wavelength. The sensor also includes a detector, where the detector is adapted to receive light from the three light emitting diodes after being attenuated by tissue. The detector generates an output signal based at least in part upon the received light. The signal processor determines blood oxygen saturation based at least upon the output signal, and the display provides an indication of the blood oxygen saturation.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: April 16, 2013
    Assignee: Cercacor Laboratories, Inc.
    Inventors: Marcelo M. Lamego, Mohamed Diab, Walter M. Weber, Ammar Al-Ali, Joe Kiani
  • Publication number: 20120232359
    Abstract: Embodiments of the present disclosure include a handheld multi-parameter patient monitor capable of determining multiple physiological parameters from the output of a light sensitive detector capable of detecting light attenuated by body tissue. For example, in an embodiment, the monitor is capable of advantageously and accurately displaying one or more of pulse rate, plethysmograph data, perfusion quality, signal confidence, and values of blood constituents in body tissue, including for example, arterial carbon monoxide saturation (“HbCO”), methemoglobin saturation (“HbMet”), total hemoglobin (“Hbt”), arterial oxygen saturation (“SpO2”), fractional arterial oxygen saturation (“SpaO2”), or the like. In an embodiment, the monitor advantageously includes a plurality of display modes enabling more parameter data to be displayed than the available physical display real estate.
    Type: Application
    Filed: May 22, 2012
    Publication date: September 13, 2012
    Applicant: CERCACOR LABORATORIES, INC.
    Inventors: Ammar Al-Ali, Joe Kiani, Mohamed Diab, Greg Olsen, Roger Wu, Rick Fishel
  • Patent number: 8190223
    Abstract: Embodiments of the present disclosure include a handheld multi-parameter patient monitor capable of determining multiple physiological parameters from the output of a light sensitive detector capable of detecting light attenuated by body tissue. For example, in an embodiment, the monitor is capable of advantageously and accurately displaying one or more of pulse rate, plethysmograph data, perfusion quality, signal confidence, and values of blood constituents in body tissue, including for example, arterial carbon monoxide saturation (“HbCO”), methemoglobin saturation (“HbMet”), total hemoglobin (“Hbt”), arterial oxygen saturation (“SpO2”), fractional arterial oxygen saturation (“SpaO2”), or the like. In an embodiment, the monitor advantageously includes a plurality of display modes enabling more parameter data to be displayed than the available physical display real estate.
    Type: Grant
    Filed: March 1, 2006
    Date of Patent: May 29, 2012
    Assignee: Masimo Laboratories, Inc.
    Inventors: Ammar Al-Ali, Joe Kiani, Mohamed Diab, Greg Olsen, Roger Wu, Rick Fishel
  • Publication number: 20080154104
    Abstract: A physiological monitor for determining blood oxygen saturation of a medical patient includes a sensor, a signal processor and a display. The sensor includes at least three light emitting diodes. Each light emitting diode is adapted to emit light of a different wavelength. The sensor also includes a detector, where the detector is adapted to receive light from the three light emitting diodes after being attenuated by tissue. The detector generates an output signal based at least in part upon the received light. The signal processor determines blood oxygen saturation based at least upon the output signal, and the display provides an indication of the blood oxygen saturation.
    Type: Application
    Filed: March 10, 2008
    Publication date: June 26, 2008
    Applicant: MASIMO LABORATORIES, INC.
    Inventors: Marcelo M. Lamego, Mohamed Diab, Walter M. Weber, Ammar Al-Ali, Joe Kiani
  • Patent number: 7343186
    Abstract: A physiological monitor for determining blood oxygen saturation of a medical patient includes a sensor, a signal processor and a display. The sensor includes at least three light emitting diodes. Each light emitting diode is adapted to emit light of a different wavelength. The sensor also includes a detector, where the detector is adapted to receive light from the three light emitting diodes after being attenuated by tissue. The detector generates an output signal based at least in part upon the received light. The signal processor determines blood oxygen saturation based at least upon the output signal, and the display provides an indication of the blood oxygen saturation.
    Type: Grant
    Filed: May 27, 2005
    Date of Patent: March 11, 2008
    Assignee: Masimo Laboratories, Inc.
    Inventors: Marcelo M. Lamego, Mohamed Diab, Walter M. Weber, Ammar Al-Ali, Joe Kiani
  • Publication number: 20060238358
    Abstract: Embodiments of the present disclosure include a handheld multi-parameter patient monitor capable of determining multiple physiological parameters from the output of a light sensitive detector capable of detecting light attenuated by body tissue. For example, in an embodiment, the monitor is capable of advantageously and accurately displaying one or more of pulse rate, plethysmograph data, perfusion quality, signal confidence, and values of blood constituents in body tissue, including for example, arterial carbon monoxide saturation (“HbCO”), methemoglobin saturation (“HbMet”), total hemoglobin (“Hbt”), arterial oxygen saturation (“SpO2”), fractional arterial oxygen saturation (“SpaO2”), or the like. In an embodiment, the monitor advantageously includes a plurality of display modes enabling more parameter data to be displayed than the available physical display real estate.
    Type: Application
    Filed: March 1, 2006
    Publication date: October 26, 2006
    Inventors: Ammar Al-Ali, Joe Kiani, Mohamed Diab, Roger Wu, Rick Fishel
  • Publication number: 20060226992
    Abstract: Embodiments of the present disclosure include a handheld multi-parameter patient monitor capable of determining multiple physiological parameters from the output of a light sensitive detector capable of detecting light attenuated by body tissue. For example, in an embodiment, the monitor is capable of advantageously and accurately displaying one or more of pulse rate, plethysmograph data, perfusion quality, signal confidence, and values of blood constituents in body tissue, including for example, arterial carbon monoxide saturation (“HbCO”), methemoglobin saturation (“HbMet”), total hemoglobin (“Hbt”), arterial oxygen saturation (“SpO2”), fractional arterial oxygen saturation (“SpaO2”), or the like. In an embodiment, the monitor advantageously includes a plurality of display modes enabling more parameter data to be displayed than the available physical display real estate.
    Type: Application
    Filed: March 1, 2006
    Publication date: October 12, 2006
    Inventors: Ammar Al-Ali, Joe Kiani, Mohamed Diab, Greg Olsen, Roger Wu, Rick Fishel
  • Publication number: 20060220881
    Abstract: Embodiments of the present disclosure include a handheld multi-parameter patient monitor capable of determining multiple physiological parameters from the output of a light sensitive detector capable of detecting light attenuated by body tissue. For example, in an embodiment, the monitor is capable of advantageously and accurately displaying one or more of pulse rate, plethysmograph data, perfusion quality, signal confidence, and values of blood constituents in body tissue, including for example, arterial carbon monoxide saturation (“HbCO”), methemoglobin saturation (“HbMet”), total hemoglobin (“Hbt”), arterial oxygen saturation (“SpO2”), fractional arterial oxygen saturation (“SpaO2”), or the like. In an embodiment, the monitor advantageously includes a plurality of display modes enabling more parameter data to be displayed than the available physical display real estate.
    Type: Application
    Filed: March 1, 2006
    Publication date: October 5, 2006
    Inventors: Ammar Al-Ali, Joe Kiani
  • Publication number: 20060211932
    Abstract: A physiological measurement system has a sensor, a processor, a communications link and information elements. The sensor is configured to transmit light having a plurality of wavelengths into a tissue site and to generate a sensor signal responsive to the transmitted light after tissue attenuation. The processor is configured to operate on the sensor signal so as to derive at least one physiological parameter. The communications link is adapted to provide communications between the sensor and the processor. The information elements are distributed across at least one of the sensor, the processor and the communications link and provide operational information corresponding to at least one of the sensor, the processor and the communications link.
    Type: Application
    Filed: March 1, 2006
    Publication date: September 21, 2006
    Inventors: Ammar Al-Ali, Walter Weber, Joe Kiani
  • Publication number: 20060009688
    Abstract: A physiological monitor for determining blood oxygen saturation of a medical patient includes a sensor, a signal processor and a display. The sensor includes at least three light emitting diodes. Each light emitting diode is adapted to emit light of a different wavelength. The sensor also includes a detector, where the detector is adapted to receive light from the three light emitting diodes after being attenuated by tissue. The detector generates an output signal based at least in part upon the received light. The signal processor determines blood oxygen saturation based at least upon the output signal, and the display provides an indication of the blood oxygen saturation.
    Type: Application
    Filed: May 27, 2005
    Publication date: January 12, 2006
    Inventors: Marcelo Lamego, Mohamed Diab, Walter Weber, Ammar Al-Ali, Joe Kiani